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INTRODUCTION

In the second half of the twentieth century, 
the American workplace has been dominated by
configurations of mass-produced office 
f urni tur e .

What we call furniture does not only include
desks, filing cabinets, tables and chairs. It
also includes panels, shelves, ceilings, and
floors. All of it is modular. That means, 
that any one of these elements is made in a
limited set of standard sizes. The various 
elements, in their various standard sizes,
are then combined in various ways to produce
a "layout” .

The fundamental assumption underlying all
furniture production in the 1970's and 80 1 s , 
is this: Within reasonable limits, ANY
desired layout can be made by combinations of
the standard elements.

Of course it is widely recognised that the
modularity of the elements may create
constraints of a few inches here and there —
but the assumption is that these constraints 
have only very minor effects on the possible
kinds of layout. It is assumed that they may 
slightly increase overall area, or that they
may force certain dimensions an inch or two
up or down from the ideal —  but it is
assumed that beyond that, there is no harmful
effect from the modularity of the elements, 
and no harmful impact on the configurations
which can be produced with them.

In order to make this assumption quite 
precise, we must add to it, a definition of 
the modules in current use.

Available tables, for example, come in
increments of 12 inches. You can buy a four
foot, a five foot and a six foot table. In
this case, then, we shall speak of a 12 inch
m o d u 1e .
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Available panel sizes from Haworth, come in a 
range of sizes which permit combinations of 
lengths that vary by increments of 8 inches. 
In this case, then, we shall speak of an 8 
inch m o d u 1e .

The module we shall be referring to, through 
this article, is thus not the size of the 
element, but the size of increments which are 
available among the elements of a particular 
type. Typical modules in the present office 
furniture industry, range from about 4 inches 
to about 16 inches, and most of them are on 
the order of about 8 inches.

We may sum up this general assumption, in the
following proposition, which we shall call 
the modularity assumption:

ALL OFFICE CONFIGURATIONS WHICH ARE NECESSARY 
FOR HUMAN COMFORT AND EFFICIENT WORK CAN BE 
PRODUCED, TO WITHIN A REASONABLE AND 
ACCEPTABLE TOLERANCE, BY COMBINATIONS OF 
AVAILABLE MODULAR ELEMENTS.

This assumption is fundamental to the 
furniture industry as we know it. If this 
assumption were to be proven wrong, then the 
whole furniture industry would face massive 
reorganisation, which would profoundly shake 
the nature of the American workplace.

In this article we shall argue that the 
modularity assumption is indeed WRONG. We 
shall argue that, on the contrary, the 
modular nature of elements in a furniture 
system is extremely harmful, to an extent not 
even suspected up until now, and that 
comfortable and efficient workplaces mrtrs~t tre~ 
drastically harmed by the use of modular 
e 1ement s .
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We shall argue that the modularity assumption
quoted above, is a naive and erroneous
assumption, which utterly fails to recognise 
certain deep interactions which occur in the
nature of space, and that it is can be shown
that a functionally adequate work
enivironment can only be produced by elements
whose module is several orders of magnitude
smaller than the modules currently in use.

We shall argue, in short, that for purely
mathematical reasons, which have only to do 
with the nature of space, and the nature of
geometrical combinatorics, it simply is not 
possible to create adequate levels of comfort
and efficiency, by combining crude furniture
and partition modules in space.

—r m

We shall embody this statement in a loose 
theorem, which relates the grain of a 
configuration, and its level of functional 
order, to the size of module which can 
realise this necessary order of the 
configuration. As we shall see, the module 
necessary to achieve good results, is 
approximately one hundredth of the size of 
the key dimensions in the configurations 
des i r e d .

^  'v̂— ' <r
In— pna-e-t-4cal.ic rm-s^— th4~s— means_that-the
largest module which can produce comfort in 
thejf human workplace, wh o s-e— Lay— dimen -s-aron-a

j&n the order of three to ten feet (1 to 3 
met e r s ) jifs a m odule on the order of about 1/4 
to 1/2 inch, or about one centimeter.

j* Ttrirs s in-g-l-e— p-rx>posd.-fc4ron-y— tĥ tr---s--h-owrs that 
any— p-racfe i~e-a~b— sen sn— Srt— a-l-l~, modular mass 
produced furniture as currently produced by 
the present generation of American 
manufacturers, is doomed to produce 
disfunctiona1 and harmful environments.

The definition of an alternative system of
production, which is capable of making the
fine adaptations necessary to guarantee GOOD 
conf igurations , irĵ taken up in a separate 
article. b(A

-oOo-



PART 1 : MATHEMATICAL AND BIOLOGICAL EXAMPLES

In order to explain the general line of 
argument that will be followed in this paper, 
we shall begin with certain simple examples, 
that illustrate the general proposition that 
desirable configurations cannot necessarily 
be realised by combining modular elements.

We shall start with a series of examples
which demonstrate that the kind of difficulty
we are talking about is not "practical" or 
"technical" —  but mathematical. We are
talking about things which are not just
difficult, but really IMPOSSIBLE.

1. HEXAGONAL TILING OF THE SPHERE.

It is widely known that it is possible to
tile an infinite plane, with hexagonal tiles.

HEXAGONAL TILES

One might assume, then, that by bending the 
tiles, and curving their edges a bit, it
would also be possible to tile a sphere with
hexag o n s .

However, this is is not difficult. IT IS
IMPOSSIBLE, it is always necessary to insert 
a few pentagons. We can easily prove that
there is no way whatsoever of doing it, by 
using Euler's theorem. (See W e y l , Symmetry,
Princeton, ...).

WEYLS EXAMPLE OF TILING ON A SPHERE

Here we have one example of a case, where the 
exclusive use of a simple modular element,
simply CANNOT produce a given desired 
conf iguration.
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2. CRYSTAL DISLOCATIONS.

Consider, secondly, the configurations which 
can be made by infinite arrays of small ball 
bearings or bubbles. These arrays have been 
used as two dimensional analogues of crystal 
structure, to study large scale order in 
c rystals.

DISLOCATIONS IN A RAFT OF SPHERES

Theoretically, the identical spheres can pack
for ever in the plane, to form an infinite 
modular array.

In practice, however, what happens is quite
different. The modular array goes for a 
certain distance, and there is then a rift,
or crevasse, before the array starts up
again. Often these rifts or dislocations
separate parts of the array that are not
aligned. Sometimes they are aligned, but the
dislocation occurs anyway.

The dislocations occur almost universally in
real crystals. They come about for various
reasons. Some are caused by slight
imperfections in the spheres, which "build
up" and get more severe as the pattern
crosses space. Others are caused by the fact
that the infinite arrays start growing in
more than one place, and then have no way of
joining neatly, when the arrays meet.

Here we have a case, where identical modules
cannot easily create even the simplest type
of large-scale order. The large scale order
forces a break in the array, simply as a
result of the way things fit together.

H H

Te, V  rc—m  is siii i®i! 7
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3. THE CHESSBOARD TILING PROBLEM.

Here is another example where a simple module 
cannot be arranged in a desired combination.

Consider a chessboard in which two opposite
corners have been removed. It is an
arrangement of 62 small squares, with two 
opposite corners taken out.

BOARD WITH 62 SQUARES

Suppose we now have 31 rectangles, like
dominoes, each an exact double square, and
try to find a way of arranging these 31
doub1e- squares on the 62-square array.

If we try it, it is very hard to do. Somehow,
the extra rectangle always ends up in the 
wrong place, and a single square gets left
over somewhere where you dont want it. In any
case, it seems hard to do.

Once again, the fact is, THAT IT CANNOT BE
DONE AT ALL. This can easily be proved, by a
simple mathematical argument (Martin Gardner 
or other).

But the important point is, that at 
first sight there is no obvious reason why
the 31 doub1e- squares should not be fitted 
together, somehow, to cover the 62 squares.

Apparently, there is some aspect of the 
global order, which escapes our notice, and
yet makes the task impossible. There are,
apparently, s^ome deep-lying geometrical 
interactions, which prevent this particular
configuration from being possible.

It is these HIDDEN INTERACTIONS, which 
prevent small modules from being arranged to 
form certain desirable larger configurations, 
that are the essence of this article.
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4. PYTHAGOREAN TRIANGLES

These first three examples create a vague 
intuitive sense that geometry is more complex 
than we imagine, and that modular elements, 
cannot always be used to create a given 
conf iguration.

Let us now consider a mo-r-e straightforward 
example, which is closer, to the problem of 
arranging office furniture.

Suppose that we wanted to create a certain
storeroom in our office layout, which is a
particular right angled triangle. To do it,
we must build ALL THREE sides of this
triangle with available panels, and further,
since it isfs toreroom, the panels must meet Aexactly at the corners. (This example does 
not correspond to any realistic situation. It 
is presented only to show the mathematical 
difficulties involved).

We specify the triangle, by giving the 
lengths of the two short sides. Let us say 
the overall office layout requires a 
triangular storeroom whose two short sides 
are 8 feet and 12 feet. Since we are working 
with a panel system, we MUST build this 
triangle out of modular panels.

First, to be most simple, let us suppose that 
we have just one size of panel, which is four 
feet long. Obviously, we cannot even build 
the two short sides of the triangle. The 
nearest we can come, is either to make both 
of them 12 feet, or else to make one 8 feet 
and the other 12.

THE TWO POSSIBLE CONFIGURATIONS.
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But even in these two cases, we cannot even 
BEGIN to get the third side of the triangle 
right. In the case of the 8-12 triangle, the
third side should be 14.42 feet. The nearest
we can get with our 4 foot module, is either 
12 or 16. In the case of the 12-12 triangle, 
the third side should be 16.97 feet. The
nearest we can get is either 16 or 20.

BOTCHED CONFIGURATIONS

What all this means, is quite simple. With
our four foot panel, we cannot even approach
the configuration of the triangle we are
trying to get.

Let us now try a more realistic approach.

In the Haworth panel system, we have panels
of 48", 32” , 24” and 16” . What this means, is
that we actually have a module of 8 inches,
since any multiple of 8 ” can be created by
combining the available panels.

With this system, and its 8 inch module, we
can get both 10 and 12 feet exactly. We can
therefore construct the two short sides of
the triangle perfectly.

Now, in order to close the triangle, thre
third side, the hypotenuse, must be 15.62 
feet.

With our 8 ” module, we can get l S ^ ” or
1 6 ’0 ” . Each one is about 4 inches off.

But since the system has to close, a miss is
as good as a mile. The panels just cannot
create the third side of the triangle.

- o 0 o -

It cannot be done.
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Let us ask, just which triangles CAN be 
created by a modular system.

The answer is given by elementary
ma t hematics.

Any right angled triangle must satisfy the 
theorem of Pythagoras. In order to be made 
modules, this means that each of the three 
sides, must be an integer.

The simplest <lfri angle w i th— i-n, t e g-r-a-T— sid#s 
the famous 3-4-5 triangle.

o f

/Cq —
is /x/Û xs

THE 3-4-5 TRIANGLE

If we have an eight inch module, we can 
<£cnstruct a 3-4-5 triangle, in multiples of 8 
inches. For instance, we can make a triangle 
of 2 feet, 2 foot 8 M , and 3 foot 4 ". Or,
coming up to the scale of our storeroom, we 
can get a triangle of 10 feet, 1 3 ’4", and
1 6 ’ 8 " .

-3r f <&->#■

Well, under some cirucumstances, this is not 
a bad match. But let us assume that we must
have the two short sides exactply 10* and 
12*, otherwise it wont fit into the office 
layout. This means, we must have a triangle 
of the shap^e we saw before. A scaled up
3-4-5 triangle wont do. Then we arent even 
close.

Can such a triangle be built with ANY modular 
system, even if the module is very tiny.

Well, yes of course it can.

We must find .one o,f the P y t h a g o r e a n  -t-n-fc e g err 
tri angjfl es, w4v4-e4¥-~h-&-6 sides^in the ratio 
10-12 ^and which^nas an— i n t e g ^ ~l number of 
modules in its hypotenuse^
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The smallness of the module we need to 
accomplish this task, depends on how fussy we 
are about the match to the 10-12 ratio.

For example, suppose we say that the 10-12 
ratio, must be kept within 1%. Then we can 
find the first Pythagorean integer triangle, 
whose two small sides have a ratio within 1%
of 10/12. It is a huge triangle, with sides
on the order of 10,000, 12,000 and 15,600.

We may then declare that trh-aps this 1% level 
of approximation to the proper shape of the 
storeroom can be attained by a module small 
enough so that there are 10,000 modules in 10 
feet —  in short, a module of about .012 
inches or one hundredth of an inch.

Let us note that this problem is
MATHEMATICAL, not practical.

If we wish to make a storeroom of the 
specified shape, using modules, THEN IT IS A 
MATHEMATICAL FACT that the largest module 
which will accomplish this is about 1/100
inch.

In this case, the modular ratio, the ratio of
the key dimensions of the configuration, to 
the size of the module, is about 10,000 to 1.

If we wish to make triangular configurations 
within a modular system, then the size of
modules we can tolerate, in order to get a
reasonable match to the triangles we want, IS
VERY VERY SMALL INDEED.

'f̂ herarsne— rro-4 t-h-au-t, we are not c 1 aiming _  
-ĉ cryC

I-nr"—f a C"fc—£— w C' 
bel'ie'Ve Ftrart— trtrey— anre— e-xirr sure l~y— tm-H  k c 1 y— fc-<r

thattriangular configurations
in office layouts

We are merely demons ti/a ting that the
cal interactions 
^a simple layout 

problem, CAN EASILY create conditions that 
make modular design impossible, unless the 
module is very very tiny, compared with the 
size of the configurations key dimensions.

numerical and geometri 
between dimensions, /in



5. THE HUMAN NOSE.

Let us now leave the abstract subject of
geometry, and concentrate on a practical 
problem of configuration in a simple
biological entitity. For fun, and for the
sake of example, we take the case of a human
no s e .

Let us consider the difficulties we would run
into, if we were to try to build up a human 
nose, out of modular entities.

To simplify the matter, let us just consider
the surface of the nose. The surface is a 
curved surface, in three dimensions. It has a 
highly complex shape. It swells, contracts, 
has bulges, narrows, nostrils, the bone of 
the ridge, and so on.

If we were to examine the real cells out of
which this complex surface is made, we would
find two things. First of all, the cells are
extremely small, compared with the size of
the nose's global configuration. The nose and
its features are on the order of millimeters-2-and centimeters (M -£$> and M ) . The cells, on
the other hand, are on the order of a 
thousandth of a millemeter across. Thus the 
cells are on the order of on e’ th ousandth ofyvthe size of the main configuration features 
of the nose.

And secondly, even with this restriction, the
cells are NOT modular. They are irregular in 
shape (like potatoes, pears, etc) and they 
also vary in dimension. Each one is just the 
size it needs to be, to fit into its place on
the complex curved surface of the nose. No 
two are exactly the same size.

Now this feature of the way the nose's
surface is made of irregular, dimensionally 
varying cells, is not an accidental feature 
of the thing. It is MATHEMATICALLY NECESSARY.



It is not hard to see that it is 
mathematically impossible to construct a 
surface like the noses surface, from modular 
ent i t i e s .

shown b e 1o w .

If we construct a series of adjacent arcs,
lying in the surface of the nose, each arc 
has a different length. Furthermore, the rate
at which the length of these arcs changes, is
different at different places, according to 
the degree of curvature which exists in the
surface, both in the direction of the arc, 
and in the direction at right angles to the
ar c .

This means that it would be quite impossible 
to construct these arcs, out of little
modular beads. Suppose we choose the size of 
beads, so that one particular arc has a whole 
number of beads in it. There is then
virtually no chance at all, that the next arc 
(the one which lies one bead diameter away on
the surface) WILL ALSO HAVE A LENGTH THAT IS 
AN INTEGRAL NUMBER OF BEADS.

Cons ider a part of the surface



The reader may point out that at SOME level
there must indeed be modules. Perhaps, in
this case, at the molecular level.

This, of course, is true. But the difference
between the grain size (the key dimensions of
the configuration) and the size of the
module, is then several orders of magnitude
—  perhaps as much as 1:1,000,000.

In this case, the lumpiness of the surface,
is so tiny with respect to the global aspects
of the nose configuration, that it seems
smoothed out, and disappears within the
roughness of the surface.

- o 0 o -

The cells, which can vary infinitely in their 
size and shape, solve this problem. They 
allow the curved surface of the nose to be
exactly what it has to be, to cover the 
tissues, and cartilege, and to allow the nose
to function.

We note that although this problem seems 
biological, deeply it is mathematical in 
n a t u r e .

The impossibility of covering a nose with 
crude modules, is a MATHEMATICAL
impossibility. The way that the nose is built
out of infinitely varying cells, is based on 
MATHEMATICAL necessity.



PART 2: OFFICE EXAMPLES

We have looked at a few simple examples, of
cases where certain global configurations 
cannot easily be realised by the use of 
modules —  or where, in any case, the modules
have to be VERY SMALL INDEED, compared with 
the size of the configurations.

Of course, so far we have not studied any
significant examples of office layout, to see
if they are similar.

Indeed, the key question is this.

Are the examples we have been looking at
"trick" examples, which represent extremely 
unusual special cases. Or, is it rather the
rule that ANY complex configuration in three 
dimensions, requires a ratio of module to key 
dimension which is very very small.

We assert the latter.

That is, we assert the following, which we 
shall call the NON-MODULARITY THEOREM.

WITH THE EXCEPTION OF AN INSIGNIFICANTLY 
SMALL NUMBER OF SPECIAL CASES, ANY COMPLEX 
CONFIGURATION IN THREE DIMENSIONS WHICH 
CONTAINS IMPORTANT DIMENSIONS AND RELATIONS 
THAT CANNOT BE ARBITRARILY VARIED WILL 
REQUIRE THE USE OF MODULES WHOSE RATIO IS 
BETWEEN 1:100 AND 1: 1000 OF THE KEY
DIMENSIONS IN THE CONFIGURATION.

This implies that in a w e 11-functioning 
office layout, whose key configuration 
dimensions are on the order of 1-4 meters, 
the largest module which can allow successful 
realisations, will be between 1 millimeter 
and 1 centimeter.



—  /y-2 -/•yV

*— ? 
—

p ^ t Y

Jy / Cu*̂ -̂ ****-*

— £
T K ^ s-cjig irffll

fl-sd Lv<*<JL <~*0

J U s C ^

1 =
3  —  y\ H -/


