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‘La, tout n’est qu’ordre et beaute, Luxe, calme et volupte’

Perception and Modular Co-ordination
by Christopher Alexander

going to be responsible for a great deal of 
the experience—structure, materials, space 
enclosed, are all much more important.
But it does play its part. And it is this part 
that we are interested in.
Before we can go any further we must be 
entirely clear about our use of the word 
‘order’.
When one of Mondrian’s paintings, for 
example, is said to possess a high degree 
of order it is not at all clear what is meant. 
‘Order’ is used much as ‘excellence’ might 
be—it tells us hardly more than that the 
painting is a good one of a certain sort. 
(This is not to say that Mondrian’s paint
ings are not ordered. Only that their order 
is too elusive for us to understand it; we 
are too stupid yet, perhaps, to see just what 
it is.)
In this discussion we shall only use ‘order’ 
where we can give the word operational 
definition, where we can point to the order, 
where we can say "This is what makes it 
ordered’.
The obvious meanings of ‘order’ refer to 
some kind of simplicity, symmetry perhaps, 
lack of complication, lack of distraction. It 
is not difficult to decide on an operational 
criterion according to which we can make 
up our minds whether to call an object 
ordered or not. Suppose we decide on some 
such criterion. Is it then true to say that 
those objects that are ‘ordered’ are easier 
on the eye than those that are not ‘ordered’ ? 
And if we assume this to be the case, is there 
anything in the mechanics of perception 
that justifies the assumption ? Or, to put the 
question another way, is there anything 
about objects that are ordered that might 
lead us to expect them to be visually 
satisfactory ?
We must admit right away that there is no 
conclusive evidence one way or the other. 
But there are some indications.
All three theories of perception that we 
shall examine (and they are among the 
most important current accounts), have 
this in common: they maintain that seeing 
involves an effort, and that the perceptual 
mechanism works in such a way as to 
minimise this effort.
It is no great step from here to the answer 
we want. For if the object being seen is 
simple (or ‘ordered’), the effort that the 
mechanism needs to make is particularly 
small—and the situation is, from the point 
of view of the lazy brain, satisfactory.

The gestalt account of perception is ruled 
by the principle of isomorphism,
The theory suggests that whenever an 
object is perceived, its form re-occurs 
somehow in the nervous system. That is to 
say, the form of the physiological con
figurations in the brain is isomorphic to

(structurally analogous to) the form of the 
object.
This explains, for instance, why ambiguous 
figures are always seen in the simplest 
possible way—the brain seeks to organise 
itself in the least complicated fashion, so a 
trapezium is not seen as a trapezium in the 
frontal plane, but rather as a rectangle in 
perspective.
And it is quite clear that in terms of this 
account an ‘ordered’ object will allow the 
brain more rest than a complicated one. If 
the object itself is simple, so will the situa
tion in the brain be—and the state of affairs 
in the perceptual mechanism will be satis
factory.
In Hebb’s account of perception the ruling 
idea is one of aggregation.There is no 
overall or field theory, but instead, the 
suggestion that we see figures as the result 
of a complicated learning process which 
goes on through cell assembly in the visual 
cortex.
The basic assemblies are formed very early 
in our seeing life, and later we combine 
these basic ones in order to see more 
complicated patterns, possibly adding still 
further cells.
Again, it is the simplicity of the figure that 
gives the brain an easy job. If the brain can 
use a particularly small set of basic as
semblies, and does not need to add further 
cells to them, there will be a low level of 
activity in the visual cortex—the figure will 
be easy on the eye.
The information theory account, given by 
Attneave, is most interesting.Most 
patterns are highly redundant, in respect 
of the information they give. Thus, if we 
describe the visual field in terms of a 
minute grid, each square of which is 
monochromatic—like the grain of a photo
graph—and if we tell somebody the colour 
and tone of these tiny squares one at a time, 
not all our information will surprise him. 
In the case of a simple pattern he will 
anticipate the colour and value of most of 
the squares we come to (as soon as he 
realises what pattern it is that we are 
describing, he will know the values of all 
the remaining squares), while with compli
cated patterns he may be kept guessing 
most of the time. The complicated pattern 
is said to contain more information than 
the other—in fact, the number of errors he 
makes in predicting future squares is an 
index of the amount of information carried 
by the pattern. Attneave implies that each 
error costs the observer an effort, so that 
simple patterns, which carry less informa
tion than complicated ones, cost him a 
smaller effort than the complicated ones. 
Again then, a pattern that is ‘ordered’, 
since it costs the brain less effort than 
others, is more satisfactory to the eye.

THE USE of geometrical or arithmetical 
systems to provide internal order in build
ings was favoured by the Greeks, by the 
Renaissance Italians, and even, if we are 
to believe Mr. Lesser, by the Gothic 
masters. The conviction that an order of 
this kind plays a major part in producing 
the experience we call beauty, is a deep- 
rooted one.(i)
The conviction has, however, never been 
dissociated entirely from mysticism and 
tends either to be rejected altogether by 
‘reasonable’ people for its air of black 
magic, or to be countenanced for quite the 
wrong reasons by the mystically inclined.

It will turn out, I hope, that it is possible 
to accept the conviction with some confi
dence, but for good reasons instead of bad. 
Our inquiry wilt of necessity be humble— 
since work is almost never done in this 
field, and there are no secure foundations. 
But the problem can be discussed, if we 
think clearly and get rid of the confusion 
that besets it.
We shall deal with it as follows:
1. We shall consider this generally accepted 
view, that order is visually desirable; dis
cuss the view in the light of recent theories 
of perception, and indicate how the view 
might, in fact, be justified.
2. We shall examine the cult of the golden 
section; and show that the claims made for 
it are in large part exaggerated—that the 
order this system does provide can be 
provided just as well by countless other 
systems which are only less well known 
because no attempt has been made to 
mysticise them, to make religions of them.
3. We shall see that the golden section and 
other current module-centred systems are 
particular cases of a general system— 
which may indeed be connected with the 
facts of perception as we understand them. 
We shall develop this general system, and 
make it workable.
4. Finally we shall see that this general 
system is, as it happens, closely connected 
with modular co-ordination—that tech
nology, in fact, is developing a system that 
is intimately related to ours. We shall 
discuss ways in which these two systems, 
one the result of technological discipline, 
the other of a theory of visual order based 
on perception, can be used conjunctively.

Visual order is taken to be some quality in 
the patterns that make up a building. (We 
see patterns wherever the components of 
which the building is made are visually 
distinct.)
First, then, we are interested in the part 
played by such visual order in the experi
ence of someone who finds a building 
beautiful. Whatever we find, it is never
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First of all, throughout the writings we are 
concerned with, there seems to be deliberate 
intention to hoodwink the reader. While 
this need not have any bearing on the value 
of the idea itself, we cannot help wondering 
why it is so common; whether it is not, in 
fact, because the only way to prove things 
that are incorrect is by false argument. Or 
perhaps it is simply that the writers are 
too ignorant to know what they are doing. 
Le Corbusier, for instance, reverently 
reproduces facsimiles of two pages of 
arithmetic a mathematician did for him.*7) 
The arithmetic involved could have been 
done by many schoolboys, and to suggest 
that it is difficult by showing readers the 
original manuscript is sheer deceit. 
Similarly, Matila Ghyka glibly invokes 
Ockham’s razor at a point where the razor 
principle has no application and does not 
in any way help the idea which he intends 
it to support.
Its use is a pretence.
Another attempt to hide behind mathe
matics and impressive words is made by 
Jay Hambidge when he explains his devo
tion to the golden mean by saying that it is 
a dynamic ratio rather than a static one.l^l 
He means, it later turns out, that the 
dynamic is an irrational number like V2 
or IT, while the static numbers are integral 
fractions.Now, although there is no 
harm in putting this forward as new 
terminology, it is senseless to describe the 
difference as significant when discussing 
the way people react to patterns.

The irrational numbers make no sense as 
physical lengths. Physical lengths, which 
are by definition commensurable, must not 
be muddled with numbers that are entirely 
abstract.
Think of this another way: as regards 
physical lengths, since there can be no 
irrational ones, it makes no sense to 
distinguish between ‘static’ and ‘dynamic’ 
ratios. There is no way in which this might 
be done, since there is always a rational 
number as close as you like to any irrational 
one.

Even disreprding this logical point (vital 
though it is), the business is still absurd. 
The limitations of visual acuity make 
nonsense of it. In general, people cannot 
distinguish between two rectangles whose 
height-breadth ratios are 6 per cent apart. 
That is to say, if we have two rectangles, 
one a by b, the other a by 1 06/), observers 
cannot tell one from the other.'"*
Thus, though observers can distinguish 
between a square and a </> rectangle, and 
even between a 1:1-5 rectangle and a 
(j) rectangle, the 1 : 1 - 66 rectangle and the 

rectangle are visually the same. For an 
exceptionally acute observer we might need 
to make the difference finer—but the point 
remains. When we see, we see, not a 
rectangle with the mathematical properties 
that (1 — \/5)l2 has, but a shape whose 
sides are in a ratio somewhere between 1 • 6 
and 1 -65. (Fig. 1.)

To make distinctions between rectangles 
whose ratios are static and rectangles whose

ratios are dynamic, is to befuddle our
selves.

Each one of these tentative ‘explanations’ 
of the fact that ordered things are more apt 
to please the eye than others depends on 
the fact that the brain (or eye, if you prefer) 
is lazy.
And, of course, this view is not unarguable. 
There are ways in which just the contrary 
seems to be true—where it is suggested that 
the eye has to be kept busyS^^
Goodyear’s account of the refinements of 
Greek and Egyptian architecture suggests 
that the architects of these periods used 
entasis and similar devices, not to correct 
optical illusions, as is so often thought, but 
to achieve something positive.

To see lines that are curved as straight, or 
unequal intervals as equal, the brain has 
to make compensatory efforts, and strain 
itself far more than when it secs equal 
intervals as equals. It may be that this very 
effort is pleasurable, and that the refine
ments titivate the eye and keep it happy, so 
to speak.

And there is certainly something to be said 
for this idea.
But it does not exclude the other, and much 
older view, that simplicity rests the eye 
and is therefore beautiful.
Many, many societies have held this view— 
and of them, many made it into some kind 
of system. Both in Japan and India, for 
example, it has long been regarded as
important.'^*
In Europe the idea has been several times 
attached to the whole of religious thought. 
The Greeks, the Gothic builders, and the 
Renaissance scholars, all valued some 
such theory (though possibly it was no more 
than a desire to simplify measurement that 
made it attractive in the Middle Ages); 
and now, at the moment when hope of 
understanding visual aesthetics is just 
appearing, the architectural world has been 
inundated by further mysterious writing 
on the golden section and geometry. 
Instead of trying to account for the effect 
of order in a way appropriate to our time, 
the majority of writers have returned to an 
almost primitive acceptance of magic and 
ritual.

Closely related to the facts of visual acuity 
is another favourite device of golden sec- 
tionists. We are confronted with (and 
convinced by) analyses consisting of 
hundreds of lines ruled across plans and 
elevations. (Fig. 2.)
Now both the lines of the analsyis, and the 
beadinp, mouldings, frames, etc., of the 
object itself, are so thick (in relation to the 
object’s overall dimensions), and the inter
sections can be so variously made, that 
any consequent deductions and results are 
valueless. (Fig. 3.)
A perfect example of the way in which line 
thickness variations can be used is the 
famous ‘paradox’ of the rectangle and the 
square. The first, consisting of 65 unit 
squares, appears to be made of the same 
elements as the second, which contains 
only 64. In fact the lost unit is taken up by 
the area of a line—but imperceptibly, 
because the lines are all thick enough to 
cover the deceit. (Fig. 4.)

But the fact that line analyses prove nothing 
does not daunt the mystic. He has far more 
impressive evidence for the uniqueness and 
special qualities of the golden mean."^*
The occurrence of the golden mean in 
nature. The Fibonacci series and the 
geometrical figures associated with it, 
pervade, so it would seem, the world of 
natural forms. And this is taken to be a 
clear indication of the mystical qualities 
of (j).
It is true that we find pentagons, five- 
petalled flowers, equiangular spirals, serial 
arrangements of leaves on branches. (Fig. 5.) 
But all these patterns are governed by the 
way in which they have been made. They 
are not the result of nature striving for 
some high ideal—simply the outcome of a 
certain kind of growth.'*^*
No more remarkable than the fact that the 
two halves of a dicotyledonous seedling 
are the same—it is a result of the way these 
plants develop. This was made clear as 
early as 1872, when it was pointed out that 
unless we can give literal sense to the idea 
of a plant ‘aiming at something’, the idea is 
absurd.(i4t
Yet almost 100 years afterwards we still 
find people writing as though nature uses 
the golden section in order to be harmo
nious.('5) The numbers actually found in 
nature (ratios like 5/8, 3/5, 2/3- 1/2), are 
not at all close to (f>, while those that are 
close to (f> (3/21, 89/144, and so on) are 
never found.

) itself plays no part in natural growth; 
lut the first few members of the Fibonacci 

series, and the structure of this series, do 
picture the serial growth of certain forms. 
This is not mysterious in any way. And 
what is more, there is no reason (except a 
Platonic one) to consider the series particu
larly significant. The fact that it is associated 
with a certain principle of growth says 
nothing about the visual effects of the 
results. Nor should it dictate anything to 
us as formbuilders—unless the ways in

Those that have promoted this return to 
the golden section are, unfortunately, often 
distinguished enough in their own fields 
to make it inconceivable that they should 
be mistaken. The absence of even the 
beginnings of careful analysis in this 
subject is attributed, not to the inability of 
its exponents, but to the nature of the subject 
Itself.

Yet we have only to examine the work in 
detail to see how flimsy its foundations are. 
The failure of writers to appreciate the true 
reason for the visual efficacy of the golden 
section has led them to shelter in a maze 
of obscurity. It is clear from their whole 
approach to the subject, and from the 
vagueness of their so-called proofs and 
demonstrations that they themselves are 
quite uncertain—that they are unable to 
account adequately for the facts.
Let us examine some of these ‘proofs’.
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Fig. 1. We can barely distinguish 
between these two rectangles, one 
1: 1 • 6, the other 1: 1-65.

Fig. 2 below. From The geometry of 
art and life, by Matila Ghyka.

Its

■■iVti

10 V)

Viv.

Fig. 4.

Fig. 3. The inner rectangle 
is 1: 1-57.
The outer rectangle is 1:1 • 51.

Fig. 5. From The geometry of art and 
life, by Matila Ghyka.

Fig. 6. Given any two rods from the 
collection, their sum also belongs to the 
collection.
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which we made forms were based on the rectilinearity. Gradually, as you reduced 
same principle. And they are not.

The two most prominent systems of recent 
years have been ‘Le Modulor’ devised by 
Le Corbusier, and the 3 ft. 4 in. and 8 ft. 
3 in. planning grids used by the Hertford
shire school designers after the war. Both 
were concerned with the actual lengths 
that appeared in the building’s components, 
so that, ultimately, these components 
might be standardised.
Both start with certain lengths, and base 
on them a set whose members fulfil the 
condition specified: ‘That if any number 
of lengths are added together, their sum 
is also a length from the set.’

In the planning grid method the set is 
constructed as follows:
The basic length is M, the module. And the 
set of lengths used is the set of all integral 
multiples of M, which satisfies the condition, 
clearly. If we have a number of lengths from 
the set, each will be of the form nM, where 
n is an integer. Their sum, consequently, 
will be («! + «2 + • • • +nK)M, which
is of the same form, and therefore belongs 
to the set also.
With the ‘Modulor’ the set is arranged 
differently. And we shall find that while 
its lengths satisfy the condition often 
enough for the relations between them to 
tell, they do not satisfy it always.
The set consists of lengths that are members 
of two interlocking Fibonacci series, the 
blue series and the red series, which we 
may denote by:
fii, Bj, Bj, B4, . . . and Ri, R2, Rj, R4 . . • 
where

+ 5„+i = B„^2
= ^n + 2

2R„==B^ . .
Now twiee any member of the red series 
does belong to the set, by virtue of identity 
(c). And the sum of two consecutive 
members of either series belongs to the set, 
by virtue of identity (a) or (b). But there 
are many combinations which lie outside 
the set, and sooner or later we shall be 
forced to use such combinations, as Le 
Corbusier himself has been forced to do.^*^
But, essentially, both systems are sets of 
numbers with what we have ealled the 
additive property—a property that can be 
written down quite simply;
5 is a set of numbers such that if x and y 
both belong to S, then x + y also belongs 
to S. It can easily be shown that such a set 
is uniquely defined by its lowest two 
members, a and b, say; and that all other 
members of the set may be expressed as 
linear combinations of a and b—that is, in 
the form na + mb, where n and m are whole 
numbers greater than or equal to zero. 
Consider, for example, the following set:
7 11 14 18 21 22 25...
This set, which fulfils the condition of 
additivity, may be defined by the pair 7,11—

14 = 7+ 7,18 = 7 + 11,21 =7+7 + 7. 
22 = 11 + 11,25 = 7 + 7 + 11, etc.
The set contains all possible linear combina
tions of 7 and 11.
It seems then, that the order produced by 
such a set is entirely dependent on a pair 
of numbers (lengths) a and b.

the number of different lengths, the 
patterns would grow clearer and clearer. 

A further, quite different, example of confu- Rectangles of similar shape would begin to
sion is to be found in all the statistical 
experiments on the golden mean.
A number of rectangles, among them a (f> 
rectangle, are shown to people who are if you are making rectilinear patterns of 
asked to say which is the most pleasant.(i6) this kind, the number of different rods, and 
Often it does turn out that the <p rectangle their respective lengths, are the only 
IS preferred by the largest number of variables—they are the only things you 
people—which shows that, within very 
broad limits (owing to the bounds of visual

appear, the relations between parts of the 
pattern would become apparent.

can change.
It is in this way that we make patterns on 

acuity), rectangles of about this shape are the surfaces of buildings—only instead of 
pleasing to the eye. rods we have the edges of adjacent
So far so good. building components. It is the sizes of these
The confusion occurs when efforts are components that characterise the patterns, 
made to account for this attractiveness by And it is the relations between the sizes 
appealing to the formal properties of </. (like that is responsible for what we have called 
I + (p = (p^, for example). The ‘reasons’ 
of this kind that are offered are far more 
obscure than the phenomenon they are 
called on to explain.
In fact the situation is as follows.
1. It is an unaccountable empirical fact
that this particular shape pleases the eye. We can’t, of course, answer this question
2. A number of rectangles have certain altogether, 
formal properties which account for the

‘order’.
But what do the relations need to be; just 
how should we control the component 
sizes so as to produce order of the kind 
that is effective, visually ?

_ , , , , c , But we can suggest an answer—an answer
fact that they ean be nested to form rather turns out to explain the efficacy of all
simple patterns. order systems in current use.

It depends on the following additive 
principle.

These two faets are, as far as we know, 
uneonnected. The second does not explain 
the first (except in a disorderly and mystical Think of the set, S, of different eomponent
fashion), and moreover there are all sorts dimensions (in our example, the set of
of rectangles that can be nested—the different lengths of rod). And give this set
property is not confined to the (f> rectangle, the property that if we take any two lengths
as it would need to be if there were any from the set, the sum of these two lengths
connection between 1 and 2. is also a member of the set.d?)
However, these nested patterns are visually (If we take any two rods from all the rods
agreeable, for a different reason. They we have, there is a third rod belonging to
please the eye, not because of any special the eollection, which has the same length
shape associated with them, but more as the other two put end to end.) (Fig. 6.)
probably because they are ordered.
Now what is it we mean when we say that 
they are ordered ?
What is it such nested patterns have, which 
other patterns do not ?
What are the special characteristics of 
order ?

(a)
ib)
(c)

We shall see first that this prineiple does 
meet some of the rather vague demands for 
satisfactoriness made by the accounts of 
perception we diseussed:
The bits of the pattern will fit together in a 
way that minimises visual confusion.
Any length can be expressed in several ways 

There is a laek of confusion. as the combination of smaller lengths.
A certain simplicity. Combinations and their variants recur
Relations between the parts. throughout the pattern.
These are the traditional ways of defining Relations between different lengths will be 
order, aren’t they? Let’s not scorn them, 
but try to see what the definitions say.

apparent just on account of the frequeney 
of their occurrence.
Bits of the pattern will appear several times.Essentially a pattern of this kind is charac- . . j

terised by the lengths of the lines that arranged and rearranged, 
make it up. Imagine yourself making such a The relations between bits, and the re
pattern from a number of straight rods. If appearance of similar bits, will make the 
all the rods were of the same length, the whole pattern easy to grasp, easy to 
pattern would have a very obvious charac- recognise.
ter, and an obvious kind of order too. If All these facts will contribute to the well- 
there were two lengths of rod available, the being of the lazy pereeptual mechanisms, 
pattern would be characterised by the That is as much as we can say. 
ratio of the two lengths. And so on up. It
is the relation between the various rods We cannot be certain that order is pleasing 
you play with that gives the pattern you 
produce its character.
Or think of starting at the other end; if you When we examine order systems, we shall 
were allowed rods of as many different find that they have the property discussed, 
lengths as you liked, and used a great so we can say, at least, that if they are 
variety, the patterns you produced would visually effective, it may well be on account 
have no order at all—over and above their of this property.

for:
to the eye. But we believe it to be so, and 
the belief does not seem altogether foolish.
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So we could equally well define the system 16 in., 18 in., and every succeeding inch, 
by specifying a and r, r being the ratio b/a. so, as we have seen, the eye would notice 
And indeed, it is in this form that the no relations among the higher members of 
theory proves most interesting, for, by the set.
giving the parameter r different values we a and b will need to be as large as possible,
can reduce the general system to particular therefore—of the order of three feet,
ones, some of which we know already.

If we put r = (f>, or b = (f>a, and remove The final choice ofa and 6 will be determined 
several members of the ensuing set of by their HCF. (The HCF of 3 ft. and 5 ft.
linear combinations, we are left with the being 1 ft., that of 3 ft. and 5 ft. 4 in.

being 4 in., that of 3 ft. and 4 ft. lOi in. 
being 4| in.)
When we select the set of linear combina
tions of a and b, we are in fact picking out 
certain lengths, which we believe will be 
visually effective in combination, from all 
the multiples of their HCF.
For, if this HCF is k, then:
1. Any member of the set is a multiple of k.
2. But the set does not contain all multiples 
of it.

The manufacturer will select his 
ponent sizes on economic grounds, and 
then, for a particular building, the designer 
will choose/row these components a set that 
has the restriction discussed, (a and b may 
be chosen from any of the components 
available—their HCF will always be 4-in., 
or a multiple of 4 in., because of the 4 iii! 
module used by the manufacturer.)
In this way it will be possible to use the 
order principle.

The connection between perception and 
modular co-ordination that has been 
established could influence a practising 
designer, certainly. It could be made 
of as a tool. But the connection 
established, principally, in the belief that 
we should know what we are up to And 
in the hope that it will increase 
fidence in modular co-ordination.

It indicates that if the various technical 
organisations succeed in their aim, establish 
the 4-in. module, and the manufacturers 
adopt it, we shall be able to design, using 
this 4-in. module and the traditional 
principle of order.

And our faith in the visual order we produce 
will no longer need to be mysterious, but 
may be in some measure understood.

com-

probably.

double Fibonacci series of the Modulor. 
The initial set is:
a (f)a la (1 + 6)0 3a 2^a 
(2 -h <f>)a (1 + 2<^)a .... which, 
since \ + <f) = <f>^, 1 + 2^ = etc., we 
may rewrite as:
a <f)a la <^a 3a l^a (2 + (j))a 
(fi^a from which we select a (f>a 
(jp-a (f>^a.... and la l(f)a 
l<f)^a . . . ., which are Le Corbusier’s red 
and blue series.

use
was

our con-

If we put r = \/?~we arrive at the system 
underlying the ground plan of Mies’ 
Farnsworth house. For here the set of 
linear combinations is:

It happens that modern technological 
theory is also based on a small module 
like our k, and we shall examine the 
possibility of making k the same as this 
manufacturers’ module, which has been

In what follows it is essential to distinguish 
clearly between the two aspects of such a 
modular theory—between the economic 
approach of the manufacturer and the 
aesthetic approach of the architectural

in the basic plan, not because Mies chose 
these lengths numerically, but because the 
plan is constructed in a certain additive 
way that has the same effect.

Finally, if we put r = 1 or a = b, we 
arrive at the familiar modular planning theorist. From the manufacturer’s point

of view it is desirable to provide the 
architect with as big a range of sizes as 
economics allow. The module is introduced 
only as a standard that will allow all the 
parts made by different manufacturers, in 

Each value of r, then, gives us a different different areas, for different purposes, to 
system—each one a particular example of beusedsuccessfully in conjunction with one 
the general system we have proposed.

NOTES

(1) See, for example, Plato’s, Theaetetus, Timaeus 
Phi/ebus; Architectural principles in the age of 
humanism, by Rudolph Wittkower, London 1952 
throughout.
Gothic cathedrals and sacred geometry, by G Lesser 
London 1957.

(2) For this account see Principles of Gestalt psvcholosrv
by K. Koffka, London 1935; for its use in art 
criticism see Art and visual perception, by Rudolnh 
Amheim, London 1956. ^

(3) The account of D. O. Hebb is contained in his The 
organisation of behaviour. New York 1949.

(4) See Some informational aspects of visual perception
by F. Attneave, in psychological review 61, 1954* 
pp. 183-193. ’

(5) This implication is found throughout the writing of 
W. H. Goodyear, as, for example, Greek refinements, 
Yale LI.P. 1912.

(6) We find this in most writing on Eastern architecture- 
for instance—/ndi'a, by Richard Lannoy, Norwich 
1955, p. 8.
The lesson of Japanese architecture, by Jiro Harada 
London 1936, pp. 45-51.

(7) Le modulor, by Le Corbusier, Boulogne 1950 
pp. 233-234.

(8) Geometrical composition and design, by Matila 
Ghyka, London 1952, p. 7.

(9) Dynamic symmetry, by Jay Hambidge, Yale
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grid. The set of linear combinations is 
nothing more than:
a la 3a 4a 5a . . . ., the set of mul
tiples of a single module a.

another. Any interest the manufacturer has 
in selecting particular lengths from the set of 

An aspect of these systems that we have not multiples, is governed by his desire to cover 
yet examined is their scale. We have said the maximum number of modular spaces 
nothing of the units to be associated with with the minimum number of elements, 
such sets—for clearly we can assign any He will choose certain multiples of k (like
units we please to their members. They can our a and b), and find out what ranges of
be millimetres, inches, feet, miles. We must the set of all multiples can be covered by
decide what sort of units will best achieve combinations of them. This problem has
the purpose under discussion—that of been examined recently, with the help of a 
making visually effective patterns. well-known number theorem which states

that every multiple of k above (a — k) 
a and b must not be too large—or the (b — k) can be expressed as a linear 
lengths would be too great for us to perceive combination of a and 6.(20) 
the relationships between them. (Moving
round a building, the eye most readily The architect who wants to introduce 
picks up lengths between 3 ft. and 10 ft.

u.p.
(10) is the limit of ratios of consecutive 

members of the Fibonacci series.
(11) The result of some unpublished experiments done 

at the Building Research Station.
(12) See, for example. The geometry of art and life, by 

Matila Ghyka, New York 1946, Chapter 6.
(13) Growth and form, by D’Arcy Wentworth Thompson, 

Cambridge 1952, pp. 912-933.
(14) See a paper by P. G. Tait, proceedings of the Royal 

Society of Edinburgh, VII, 1872, p. 391.
(15) See note (12). It is never put quite so naively, but the 

implication is always there.
(16) Such experiments were done, for example, by G. T. 

Fechner who reported them in Vorschule der 
Aestheiik, Leipzig 1876, pp. 190-202. More recently 
by T. R. Austin and R. B. Sleight, journal of 
APPLIED PSYCHOLOGY, 35, 1951, pp. 430-431.

(17) This is the first and most important axiom that 
defines a commutative additive group, in algebra.

(18) To construct a satisfactory bay width at Marseilles, 
for instance, he adds 53 cm. to 366 cm., making 
419 cm., which does not belong to either series. See 
Modulor 2, London 1958, p. 237.

In Spite of this difference the two views of Modular co-ordination in building, published by
the European productivity agency, Paris, August

(20) Geometrical aspects of modular co-ordination, by 
J. W. Harding and L. S. Vallance, the builder. 
27 Sept. 1957, pp. 552-555.
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some
kind of visual order is concerned with 

the scale of windows, doors, panels, floor almost the opposite problem. He is
to ceiling heights, and so on.) concerned with the lengths below (a — ,
But what is not so clear is that a and b must (6 — k).
not be too small either. This depends on the The visual effect associated with a number
fact that the eye is only able to grasp a very pair and its set is powerful just because,
limited range of relationships. We do not ' 
see 20 objects as 20, but as a large number.

below (a — 6) (6 — k), we cannot cover all 
multiples of k with linear combinations of 

And we see no relation between a length of a and b. We can only cover a limited set of 
19/ and one of 10k (whatever the units), these multiples, and it is this very limitation 
They appear simply as two almost equal that makes the pattern tell, 
lengths—the relation is too obscure for the 
eye to pick it up.
If our basic lengths were 4 in. and 7 in., 
for example, the set would contain: 4 in.,
7 in.. Sin., 11 in., 12 in., 14 in., 15 in..

the situation are quite compatible.
The 4 in. module is enough to make them
so.

OCTOBER 1959 429


