
Report on Software Issues
To understand good programming, we must create
programs that do the world some good ...

by Greg Bryant

Presented March, 1997 in Aspen, Colorado to the
'Gatemaker Salon': Christopher Alexander, Bill Joy,
Peter Gabriel, John Seamster, Richard Gabriel, Mike
Clary, Emily Suter

The most pressing question in engineering is: "how do
you keep your eye on the whole while creating its
parts?" The answer is simple: make sure that each
new part adds to the whole. Natural systems achieve
this through a fundamental process, which creates
robust and coherent structures of enormous
complexity. This process is now visible, and
potentially available for the construction of software.

Our goal was to create a computer-based tool, in
under three months, which helps someone design
something good for the environment.

During development, it was important to know if the
tool was growing in the right direction, and this was
done through careful evaluation as it evolved. The
emerging tool had to feel right, because the user has to
feel good about what they produce with it. But we
found that this flew directly against standard practice
in software development.

Normally, software applications are evaluated after
rather large steps, each of which involve quite a lot of
work. Typically, the question then posed is: "does this
meet the specification or milestone?" If the
specification needs to change, a change request,
spoken or written, is made. This happens a great deal,
and the changing nature of specifications has become
an understood fact in the industry.

When software is evaluated, a straightforward
question is: "has this chunk of effort truly empowered
the user in the most effective way?" But if the answer
is "not really", then a great deal of work may need to
be undone. So the tendency is to accept it as long as it
works somewhat.

So, large efforts between evaluations naturally lead to
programs we can't like, because someone saying "I
don't feel good about this step" will tend to be ignored
when the cost of undoing something is considered.
Consequently, there are many bad products.

http://gatemaker.org/

This process puts the programmer in a bad state as
well. If he follows the current spec to the next
milestone, he will naturally tend to code until that
feature is testable. He may do a few experiments, look
a few things up, but then he designs the whole feature
as best he can and starts coding. Then he debugs it.

It's a messy approach, really. It's not particularly
pleasant or satisfying until the whole feature is
working. The result tends to be code that the
programmer doesn't really care much for, as well as
behavior that doesn't really shine in any way. But it
meets the milestone.

If, instead, one made much smaller efforts in
programming, the results could be judged, and kept or
discarded, without undue loss of time. This would
make for better products. Also, since true satisfaction
comes from a good result, as well as a good structure
supporting it, the approach of engineering by small,
complete efforts offers the programmer many more
opportunities to feel good.

Preliminarily, we have found that steps to a program
that is wonderful, on the inside and out, must be
delightful, surprisingly small efforts (of, say, just 1-5
lines of code, or adjustments of code, or macros),
which must then be compiled and run. At that point
there is an evaluation -- does it work? Does it improve
the whole? Does it improve both the structure of the
program and its value to people? If not, wipe it out:
it's a small effort (although potentially of large effect),
and simple to undo. If it does work, then go on ... and
again find the next most important, effective, well-
leveraged small effort needed for the whole. This is
then compiled, evaluated, kept or tossed ... etc.

This is a major aspect of the fundamental process of
design, applied to programs. Work done this way is
enormously rewarding, and results in something
incalculably better than building to large
preconceptions or plans. It lets engineers concentrate
all their ability into small, brilliant moments.

A smallest-best step process helps to link many
common sense ideas. For example, Donald Knuth, in
Literate Programming, has suggested that the mental
state of commenting a program must be considered
separate from that of creating one. But when, then,
does one comment? The answer here is very simple:
in the evaluation stage after each small effort.

After making a smallest-important step, compiling,
and judging it to be successful, one is very much in
the mood to pat oneself on the back and describe the
latest engineering conquest. It's a perfect slip into that
mode Knuth is describing. It's an easy time to make
certain that one's eyes are pulled back to see the

whole, including one's own performance.
Commenting at that point means that one doesn't have
to write reams of comments at the end, or write them
while programming: the first is a pain and the second
is disruptive. Most importantly, commenting then
becomes a supportive, natural prelude to taking the
next important step, which requires a whole view.

Comments then help chart the growth of the product.
This is very broadly useful.

In Gatemaker, the user can review the unfolding of
gates by themselves and others. One can imagine an
analogous tool for software. The step-by-step
comments mentioned above, along with the emerging
states of the program, can be stored together to show
the growth of the software. By watching this kind of
software grow, programmers can review the structure
of the system very easily. They need only understand
one step at a time! Adele Goldberg is making similar
proposals to project teams taking on new members: in
order to get them up to speed, have them review the
evolution of the project in detail. But this approach
can only be successful if the team takes steps that are
small enough to understand, and small enough to be
seen unambiguously as good.

Re-usability and technical transfer are greatly
facilitated when one can watch the growth of an
object. Imagine some lovely place in a city, which
works wonderfully, and you want to understand it.
Watching its evolution, where it first emerged, how
it's used, how it was made and adjusted and for what
reasons, will tell you how to build that same sort of
thing where you live, in such a way that it will be
unique to your context, but still benefit from the
experience of others.

Any process animated in this way can be better
understood. But a process can be easily understood
only if the evolution took place through clear,
excellent steps.

So, imagine a wide number of programs, built by
small, brilliant steps. You know that a program does
X, and you need to do something like X too.
Normally, reading the code tells you very little of
substance: you want to know how to approach this
kind of problem, and ask "what's the important stuff
here?" But if you can see the emerging picture, then
understanding the design pressures and resolutions
comes relatively painlessly.

Also, the descriptions that comment completed work
are better guides for new work than prescriptive
instructions. We've found that sequential descriptions,
in an order reflecting the emergence of a coherent
whole, are more generative than instructions. The

reasons for this have to do with our natural ability to
make coherent things, but it's enough for now to say
that descriptions are simply more evocative and less
restrictive than prescriptions.

But even without comments and replaying of growth,
the code resulting from this process will be more
readable. This is because small, good steps more
efficiently create better organization. If the
programmer's goal is to make a satisfying
improvement with little effort, he must build his
program well. He'll try to do so with every step, and
then be able to evaluate his success, gradually getting
better at on-the-fly, stepwise organization.

The moment when one is trying to find that smallest
solution to the maximum number of current problems,
is the time one can use inspiration from patterns.
Patterns (good solutions to problems) aren't anywhere
near as effective in other circumstances. For example,
they can seriously mislead a product if they are part of
some giant architectural design. Patterns must be
available when the problem is at hand, when the
programmer is searching, trying to understand what
the best next thing to do might be.

"Take the smallest-best step", incidentally, is also the
best procedure for discovering good patterns. After
making a "best move" one immediately comments on
the nature of the move. This will be a simple enough
observation that it can be re-used by the programmer,
and others looking for real examples of excellent
moves to use in their own situations. Large complex
steps are simply not similarly re-usable, describable,
or useful as patterns.

Good patterns, and good steps, are strongly and
usefully differentiating: they make simple distinctions
and connections in a system to make it adapt to
pressures coherently. This is how living organisms
both develop and evolve. For example, organisms are
always coherent, stable and able to function, and yet
they can adapt structurally. This is only possible
through small, differentiating efforts. Making small
changes in a program, then compiling, running and
evaluating the results, is the same process.

In designing with this process, we are playing into our
natural abilities to guide the emergence of good order.
As a result, we are beginning to see sets of practical,
good habits that should be incorporated into
differentiating steps for program design.

This is just our preliminary understanding of this.
What we would like to do is a full project using the

"smallest-best steps" method, and slowly build up
tools and libraries that facilitate this approach. The
project would be completely documented step-by-
step, and the results would be published. The
publication would also document the differentiating
patterns discovered and the resulting interlocking
descriptive sequences.

Certainly the subject of this experiment must be a
genuine project. For reasons touched on above, only in
a project requiring small evaluations of goodness can
this process be understood. So we propose that this
"smallest-best steps" group in CES be directly
responsible to the production of the environmental
design tool.

Reciprocally, the environmental tool will benefit
significantly from a programming workbench that
makes this kind of development easier.

