
A CM S I G S O F T Software Engineering Notes vol 19 no 1 Jan 1994 Page 39

Christopher Alexander:
An Introduction for Object-Oriented Designers

D o u g Lea*
SUNY Oswego / NY CASE Center

Software developers lament "If only software engi-
neering could be more like X . . . ", where X is any
design-intensive profession with a longer and apparently
more successful history than software. It is therefore
both comforting and troubling to discover that the same
fundamental philosophical, methodological, and prag-
matic concerns arise in all of these Xs (see, for example,
[23, 33, 43, 46, 18, 45, 48, 50]). In part because it is con-
sidered as much artistry as engineering, writings about
architecture have most extensively explored and argued
out the basic underpinnings of design. Even within this
context, the ideas of the architect Christopher Alexan-
der stand out as penetrating, and bear compelling im-
plications for software design.

Alexander is increasingly well-known in object-
oriented (OO) design circles for his influential work
on "patterns". This paper considers patterns within
a broader review of Alexander's prolific writings on de-
sign. These include core books Notes on the Synthe-
sis of Form[l], The Timeless Way of Building[5], and
A Pattern Language[4] (hereafter abbreviated as Notes,
Timeless, and Patterns respectively), other books based
mostly on case studies[15, 3, 6, 7, 8], related articles (es-
pecially [2, 9]), and a collaborative biography[29].

This review introduces some highlights of Alexander's
work. The format is mainly topical, roughly in historical
order, interspersed and concluded with remarks about
connections to software design. It focuses on conceptual
issues, but omits topics (e.g., geometry and color) that
seem less central to software. Some discussions are ab-
stracted and abbreviated to the point of caricature, and
in no case capture the poetry of Alexander's writings
that can only be appreciated by reading the originals, or
the concreteness and practicality of pattern-based devel-
opment that can only be conveyed through experience.

*This is a work in progress. I encourage comments and reac-
tions; mail to dl@g. oswego, edu or Doug Lea, Computer Science,
SUNY Oswego, Oswego, NY 13126 USA. Copies (ca.ps) may be
ftp'ed from g. oswego, edu. Thanks to Richard Helm, Ralph John-
son, and Chamond Liu for help with drafts.

Quality
Alexander's central premise, driving over thirty years of
thoughts, actions, and writings, is that there is some-
thing fundamentally wrong with twentieth century ar-
chitectural design methods and practices. In Notes,
Alexander illustrates failures in the sensitivity of con-
temporary methods to the actual requirements and con-
ditions surrounding their development. He argues that
contemporary methods fail to generate products that
satisfy the true requirements placed upon them by in-
dividuals and society, and fail to meet the real demands
of real users, and ultimately fail in the basic require-
ment that design and engineering improve the human
condition. Problems include:

• Inability to balance individual, group, societal, and
ecological needs.

• Lack of purpose, order, and human scale.

• Aesthetic and functional failure in adapting to local
physical and social environments.

• Development of materials and standardized com-
ponents that are ill suited for use in any specific
application.

• Creation of artifacts that people do not like.

Timeless continues this theme, opening with phe-
nomenologically toned essays on "the quality without
a name", the possession of which is the ult imate goal
of any design product. It is impossible to briefly sum-
marize this. Alexander presents a number of partial
synonyms: freedom, life, wholeness, comfortability, and
harmony. But no single term or example fully conveys
meaning or captures the force of Alexander's writings on
the reader, especially surrounding the human impact of
design, the feelings and aesthetics of designers and users,
the need for commitment by developers to obtain and
preserve wholeness, and its basis in the objective equi-
librium of form. Alexander has been working for the
past twelve years on a follow-up book, The Nature of
Order, devoted solely to this topic (see [29, 9]).

ACM SIGSOFT Software Engineering Notes vol 19 no 1 Jan 1994 Page 40

M e t h o d and S truc ture

Notes is Alexander's most conventional and still most
frequently cited book, and most clearly reflects Alexan-
der's formalist training. (He pursued architecture after
obtaining science and mathematics degrees. He is also
an artist, Turkish carpet collector, and licensed con:
tractor.) It has much in common with other works
on systems, de.,~ign, and engineering that appeared in
the late 1950s and early 1960s attempting to integrate
ideas from cybernetics, discrete math, and computing,
exuding an optimistic tone that real progress was being
made.

Notes (see also [15, 12, 40]) describes how, before
the advent of modern architectural methods, artifacts
tended not to suffer from adaptation, quality, and us-
ability failures. 'The "unselfconsciously" constructed ar-
tifacts of tradition are produced without the benefit of
formal models and methods. Instead, a system of im-
plicit and often inflexible rules for design/construction
progress in an evolutionary fashion. Over time, natural
forces cause successive artifacts to better adapt to and
mesh with their environments, almost always ultimately
finding points of equilibrium and beauty, while also re-
sulting in increasingly better rules applied by people
who do not necessarily know why the rules work.

Historically, the modern "rational" design paradigm
was both a contributing factor towards and a byproduct
of the professionalization of design (see, e.g., [37, 18]).
Rational design is distinguished from traditional craft-
manship by its "selfconscious" separation of designs
from products (or, to continue the evolutionary analogy,
genotype from phenotype), its use of analytic models,
and its focus on methods that anyone with sufficient for-
mal training may apply. Analytic designers first make
tractable models (from simple blueprints on up) that
are analyzed and manipulated into a form that specifies
construction.

Rational design was in many ways a major advance
over traditional methods. However, as discussed in
Notes, the notions of analysis and synthesis are badly,
and harmfully, construed in architecture and artifact de-
sign, leading to the sterile study of methods that have no
bearing on the wast majority of artifacts actually built or
the work involved in developing them. (Wolfe[51] pro-
vides a breezier account of some of this territory, but
focusing on the schools and cults of personality found
in modern architecture, that luckily have few parallels
in software engineering.)

The main problem lies in separating activities sur-
rounding analysis and synthesis rather than recogniz-
ing their duality. While it is common to exploit the
symmetries between form and function (roughly trans-

latable as system statics versus dynamics), further op-
portunities for integrating views become lost. Like an
organism, a building is more than a realization of a de-
sign or even of a development process. Model, process,
context, and artifact are all intertwined aspects of the
same system. Artificial separations of models, phases,
and roles break these connections. One consequence is
that abstract representations lose details that always
end up mattering, but each time in different ways. The
micro-adaptations of tradition are lost, and resist model
validation efforts in those rare cases in which they are
performed. Alexander provides examples from houses to
kettles in which fascination with the form of detached,
oversimplified, inappropriate models leads to designs
that no user would want.

In Notes, Alexander argues that the key to method-
ological continuity, integration, and unification is to
temper, or even replace intensionally defined models
with reliance upon complete, extensionally-described
sets of constraints, specific to each design effort. To
match its context, a solution must be constructed along
the intrinsic fractures of the problem space. This eco-
logical perspective generates design products that are
optimally adapted to the microstructure of local condi-
tions and constraints, without the "requirements stress"
characteristic of the products of classic methods.

Notes includes presentation of a semiformal algorith-
mic method that helps automate good partitioning un-
der various assumptions. To use it, one first prepares an
exhaustive list of functional and structural constraints.
The major illustrations employ 33 and 141 constraints
respectively, each collected and refined over periods of
months. The algorithm takes as input a boolean matrix
indicating whether any given pair of constraints interact
- either positively or negatively, although concentrat-
ing on the negative since "misfits" are easier to iden-
tify and characterize. The method results in indications
of groupings that minimize total requirements interac-
tion and resulting complexity. This statistical clustering
algorithm arrives at subsystems by minimizing the in-
teraction of problem requirements that each one deals
with. The goal is to mirror the micro-structure that
each part in a well-adapted unselfconsciously designed
system would possess. This method relies upon a con-
sideration of all such constraints, again leading him to
argue for empirically and experientially guided analysis.

Even though exemplified with architectural artifacts,
Alexander's concerns and methods apply equally well
to software systems, subsystems, objects, etc. While
there are many obvious differences between houses and
software, most are matters of degree at this level of dis-
cussion. Consider, for example:

ACM SIGSOFT Software Engineering Notes vol 19 no 1 Jan 1994 Page 41

• Software entities engage in greater dynamic inter-
action (e.g., send messages to each other).

• Sometimes, describing software is the same as con-
structing it (as in programming).

• More of a software design is hidden from its users.
• Software generally has many fewer physical con-

stralnts.
• Some software requirements are allegedly more ex-

plicit and precise than "build a house here".

None of these have much bearing on methodological is-
sues. As noted by Dasgupta[18], Alexander's early writ-
ings on structure and method have influenced designers
in all realms, including computer scientists ranging from
Herbert Simon to Harlan Mills. Variants of Alexan-
der's decomposition algorithm have been applied to OO
software [13]. One can find passages in standard pre-
sentations of OO decomposition (e.g.,[14]) that surely
have indirect roots in this work. Although apparently
independently conceived, Winograd & Flores[50] is es-
pecially close in spirit, and includes discussions that
Alexander might have written had he been dealing with
software:

Many of the problems that are popularly at-
tributed to "computerization" are the result of
forcing our interactions into the narrow mold
provided by a limited formalized domain.

The most successful designs are not those that
try to fully model the domain in which they op-
erate, but those that are "in alignment" with
the fundamental structure of that domain, and
that allow for modification and evolution to
generate new structural coupling.

These themes form a basis for most of Alexander's later
writings. However, later efforts are also in large part a
response to failures in the methods and algorithms pre-
sented in Notes, as discovered by Alexander and others
[2, 29, 33, 38, 49]. While they remain useful guides
and tools, the methods encounter problems including
the possibility of missing relevant constraints, assump-
tions that requirements are completely knowable be-
forehand, ignoring the intrinsic value-ladenness of re-
quirements specifications, inability to deal with relative
weights among constraints or higher-level interactions,
failure to accommodate the fact that design components
may interact in ways that requirements do not, and in-
flexibility in adapting to future constraints. These prob-
lems, along with observations that people blindly follow-
ing such methods do not always create better products,
led to work increasingly removed from mainstream ar-
chitectural design practices.

P a t t e r n s

Timeless and Patterns were written as a pair, with the
former presenting rationale and method, and the latter
concrete details. They present a fresh alternative to the
use of standardized models and components, and ac-
centuate the philosophical, technical and social-impact
differences between analytic methods and the adaptive,
open, and reflective (all in several senses) approach to
design that Alexander is reaching for.

The term pattern is a preformal construct (Alexander
does not ever provide a formal definition) describing
sets of forces in the world and relations among them.
In Timeless, Alexander describes common, sometimes
even universal patterns of space, of events, of human
existence, ranging across all levels of granularity.

Patterns contains 253 pattern entries. Each entry
might be seen as an in-the-small handbook on a com-
mon, concrete architectural domain. Each entry links a
set of forces, a configuration or family of artifacts, and a
process for constructing a particular realization. Entries
intertwine these "problem space", "solution space", and
"construction space" issues in a simple, down-to-earth
fashion, so that each may evolve concurrently when pat-
terns are used in development.

Entries have five parts:

N a m e . A short familiar, descriptive name or phrase,
usually more indicative of the solution than of the

problem or context. Examples include Alcoves,
Main entrance, Public outdoor room, Parallel roads,
Density rings, Office connections, Sequence of sit-
ting spaces, and Interior windows.

ExRmple. One or more pictures, diagrams, and/or de-
scriptions that illustrate prototypical application.

C o n t e x t . Delineation of situations under which the
pattern applies. Often includes background, dis-
cussions of why this pattern exists, and evidence
for generality.

P r o b l e m . A description of the relevant forces and con-
straints, and how they interact. In many cases, en-
tries focus almost entirely on problem constraints
that a reader has probably never thought about.
Design and construction issues sometimes them-
selves form parts of the constraints.

Solut ion . Static relationships and dynamic rules (mi-
croprocess) describing how to construct artifacts in
accord with the pattern, often listing several vari-
ants and/or ways to adjust to circumstances. Solu-
tions reference and relate other higher- and lower-
level patterns.

ACM SIGSOFT Software Engineering Notes vol 19 no 1 Jan 1994 Page 42

But not everything of this form counts as a pattern.
Ideally, pattern entries have the following properties:

Encapsulation. , Each pattern encapsulates a well-
defined problem/solution (cf.,[41, 42]). Patterns are in-
dependent, specific, and precisely formulated enough to
make clear when they apply and whether they capture
real problems and issues, and to ensure that each step
of synthesis results in the construction of a complete,
recognizable entity, where each part makes sense as an
in-the-small whole.

Genera t iv i ty . Each entry contains a local, self-
standing process prescription describing how to con-
struct realizations. Pattern entries are written to be us-
able by all development participants, not merely trained
designers. Many patterns are unashamedly "recipes",
mirroring the "unselfconscious" procedures characteris-
tic of traditional methodless construction. An expert
may still use a pattern in the same way that an expert
chef uses a cooking recipe - to help create a personal
vision of a particular realization, while still maintaining
critical ingredients and proportions.

Equi l ibr ium. Each pattern identifies a solution space
containing an invariant that minimizes conflict among
forces and constraints. When a pattern is used in an ap-
plication, equilibrium provides a reason for each design
step, traceable to situational constraints. The rationale
that the solution meets this equilibrium may be a for-
mal, theoretical derivation, an abstraction from empiri-
cal data, observations of the pattern in naturally occur-
ring or traditional artifacts, a convincing series of exam-
ples, analysis of poor or failed solutions, or any mixture
of these. Equilibrium is the structural side of optimality
notions familiar in computing, and can be just as hard
to find a basis for, meet, or approximate [28]. Alexander
argues for establishment of objective equilibria based in
the "quality without a name" even (or especially) when
surrounding aesthetic, personal, and social factors. He
also notes the elusiveness of this goal - artifacts more
often than not fall to achieve this quality despite the
best of efforts.

Abs t rac t ion . Patterns represent abstractions of em-
pirical experience and everyday knowledge. They are
general within the stated context, although not neces-
sarily universal. (Each entry in Patterns is marked with
a "universality" designation of zero to two stars.) Pat-
tern construction (like domain analysis[44]) is an iter-
ative social process collecting, sharing, and amplifying
distributed experience and knowledge. Also, patterns

with a structural basis in or similarity with natural and
traditionally constructed artifacts exploit well adapted
partitionings of the world. Sometimes, patterns may
be constructed more mechanically, by merging others
and/or transforming them to apply to a different do-
main. And some patterns are so tied to universals that
they emerge from introspection and intuition uncontam-
inated by formalism. Heuristics based on participatory
design, introspection, linkage to existing artifacts, and
social consensus all increase the likelihood of identify-
ing central fixed and variable features, and play a role
even when that environment is purely internal and/or
artificial, but where each part helps generate a context
for others.

Openness. Patterns may be extended down to arbi-
trarily fine levels of detail. Like fractals, patterns have
no top or bottom - at the lowest levels of any design ef-
fort, some are merely opaque and/or fluid (e.g., plaster,
concrete). Patterns are used in development by finding
a collection of entries addressing the desired features of
the project at hand, where each of these may in turn
require other subpatterns. Experimentation with possi-
ble variants and examination of the relationships among
patterns that together form the whole add constraints,
adjustments and situation-specific specializations and
refinements. For example, while only a small set of
patterns would typically apply in the design of a cer-
tain housing community, each house will itself be unique
due to varying micro-patterns. Because the details of
pattern instantiations are encapsulated, they may vary
within stated constraints. These details often do impact
and further constrain those of other related patterns.
But again, this variability remains within the borders
of higher-level constraints.

Composibil i ty. Patterns are hierarchically related.
Coarse grained patterns are layered on top of, relate,
and constrain fine grained ones. These relations in-
clude, but are not restricted to various whole-part
relations[16]. Most patterns are both upwardly and
downwardly composible, minimizing interaction with
other patterns, making clear when two related patterns
must share a third, and admitting maximal variation
in sub-patterns. Pattern entries are arranged conceptu-
ally as a language that expresses this layering. Because
the forms of patterns and their relations to others are
only loosely constrained and written entirely in natu-
ral language, the pattern language is merely analogous
to a formal production system language, but has about
the same properties, including infinite nondeterministic
generativity.

ACM SIGSOFT Software Engineering Notes vol 19 no 1 Jan 1994 Page 43

P r o c e s s

Patterns includes brief recipe-like accounts on how to
apply and compose patterns. However, Alexander dis-
courages slavish conformance, and describes develop-
ment mainly through concrete examples illustrating how
groupings at different levels of hierarchies tend to be
based upon different levels of concerns. Coarser-grained
patterns are less constraining in detail than finer-
grained ones. Exact commitments are postponed un-
til the consequences of lower-level construction and/or
experimentation can be assessed.

Even though high-level patterns hold throughout de-
velopment, this process need not, for example, generate
a classic blueprint drawing before construction. Also,
because the relations among larger and smaller patterns
do not always represent strict containment, there may
be interactions among subpatterns and other higher-
level interactions requiring experimentation and reso-
lution. Patterns includes entries (e.g., Site repair) de-
scribing how to deal with particular kinds of interac-
tions. All "joints", "transitions", and "spaces" among
components are explicitly designed using other patterns
that balance the needs of the parts versus the needs of
the whole.

Pattern-based design activities resist accommodation
within a linear development process, and raise chal-
lenges in the construction of suitable process models
that still meet costing, predictability, and control crite-
ria. Since the early 1970s Alexander has experimented
with several overall development processes that preserve
the integrity and promises of pattern-based design, as
applied to projects at all scales, including houses, a
cafe, a medical facility, apartments, two universities,
a rural housing community, and an urban community
[5, 29, 3, 9, 6, 7, 8]. The resulting process principles
and development patterns include:

Collective Deve lopment . Development is a social
process. Participation from all levels (users, policy-
makers, etc.) is required for decisions affecting multiple
parts or users, as well as those concerning future growth
and evolution. Rather than a plan, a group adopts a
(stateful) process that balances collective and individ-
ual needs, and preserves the rationale for particular de-
cisions.

Participatory Design. Users can help design things
that they really need and want, that are better adapted
to their surroundings, and that are more aesthetically
pleasing (see also [47, 40, 34]). Even if the design partic-
ipants are not the permanent, ultimate users, participa-

tion by someone impacted by the artifact is better than
the alternative. Architects may reject user requests only
when their knowledge of local constraints is demonstra-
bly greater.

Responsibil i ty. Architects hold financial and legal
charge for the consequences of their activities, and con-
trol corresponding cash flow. This provides both au-
thority and responsibility for adaptation across devel-
opment.

Decentral izat ion. Larger efforts can be subdivided
into expanding centers or domains, that increasingly in-
fluence one another in the course of growth. Localized
experimentation, discovery, and change are intrinsic to
such adaptation. This includes situations in which con-
ditions change and designs evolve. The diagnosis and
local repair of problems with existing parts are part of
any design effort.

Integration of Roles. Designers operate at several
levels. Primary roles should be assigned with respect to
problem task or domain, not phase or level. Architects
must sometimes be builders, and vice versa. They can-
not otherwise get things right. Intimacy with all aspects
of an effort allows the builder-architect to firsthand dis-
cover constraints, needs and desires.

Integration of Activities. Design is interwoven with
synthesis in a mainly bottom-up fashion. Construction
proceeds in an order governed by pattern interdepen-
dencies, the continuous analysis and repair of failures,
and commitment to detail, variety, experimentation,
and wholeness. Concurrent development of mostly-
independent parts allows construction to branch out
from multiple centers, ultimately "stiffening" into final
form.

Stepwise Cons t ruc t ion . Artifacts are constructed
one pattern at a time, each of which results in a
complete, recognizable form adapted to other already-
constructed artifacts and partially committed plans.
Efforts are focused upon operations, not components.
Each operation is complete in itself. Creativity and ac-
complishment are maintained at all levels of this pro-
cess.

ACM SIGSOFT Software Engineering Notes vol 19 no 1 Jan 1994 Page 44

Patterns and OO Design

The form and features of patterns, and the methods
and processes surrounding them are in no way special to
architectural design. The entries in Patterns represent
"special theorie~s" of the world. Alexander notes[29] that
his characterization of patterns meshes well with com-
mon definitions of scientific theories. The heuristics gov-
erning the cons Lruction of patterns are all but indistin-
guishable from those for theories. (See also [18, 49, 38],
who note that while such correspondences add an aura
of respectability, they also open up design to the con-
troversies surrounding modern scientific method.) Pat-
terns are less general than descriptions of the base se-
mantics of the pattern language itself, yet equally far
removed from the realm of "neat tricks". The careful
interplay betwe,en contexts, problem-space forces, and
constructive solutions make this framework an ideal ba-
sis for capturing other kinds of design knowledge and
practices as well.

In fact, Alexander's patterns bear a straightforward
relation to OO constructs. Patterns may be viewed as
extending the definitional features of classes. In OO
design, classes have two principle aspects, analogous to
those of patterns:

• The external, problem-space view: Descriptions of
properties, responsibilities, capabilities and sup-
ported services as seen by software clients or the
outside world.

• The internal, solution-space view: Static and
dynamic descriptions, constraints, and contracts
among other components, delegates, collaborators
and helpers, each of which is known only with re-
spect to a possibly incomplete external view (i.e.,
a class, but where the actual member may conform
to a stronger subclass).

The best classes, also share the properties of appropri-
ate abstraction, encapsulation, openness, and equilib-
rium. Like patterns, classes are normally generative,
supporting parameterized instance construction as well
as higher-order instantiation in the case of generic (tem-
plate) classes. Classes are intrinsically composible, al-
though these compositions need not always be expressed
as classes, e.g., at topmost decomposition levels.

Indeed, since patterns can describe concepts and
structures (e.g., coordinated groups) that are not them-
selves objects, the term pattern may be more fitting than
class (or alternatively, the notion of a class should be
broadened) at least at the level of OO design variously
termed "abstracC, "architectural", and/or "functional"
(see., e.g., [20]). Patterns can thus raise the expressive-
hess and level of description supported by familiar OO

constructs. Conversely, OO concepts may be applied to
strengthen pattern-based design notions:

Languages and Tools. Alexander grammatically ar-
ranges pattern entries (although in an implicit fashion)
to exploit the generative properties of formal languages
[29]. In computing, just about every possible formal,
semiformal, and informal set of constructs have been
collected as a language of some sort. For example, as
shown in the Demeter project [36], a set of OO classes
may be represented grammatically using rewrite rules
denoting pattern-like compositional layering. However,
it is unnecessary to construe a collection of patterns or
classes themselves as a language. In programming, it
is usually more convenient to express descriptions in a
broader language, to facilitate manipulation, compila-
tion, etc. Extensions of OO modelling, design and/or
programming languages may serve well in representing
patterns. Such formalization also allows for construc-
tion of design tools. Several Computer Aided Architec-
tural Design (CAAD) systems have represented Alexan-
der's patterns in software. Most recently, Galle [24, 25]
has described a CAAD framework supporting pattern-
based design built as a partially object-oriented expert
system. Aspects of this system might be abstracted as
patterns, and used in the construction of similar CASE
design tools. However, it will surely take some time be-
fore OO design tools and books reach the utility and
authoritativeness of Patterns.

Subelass ing and Ref inemen t . In addition to sup-
porting compositional relations, all OO notations in-
clude a second kind of structuring rule to describe pos-
sible alternative paths though a set of concepts, cap-
turing both the composition / decomposition and ab-
straction / refinement design spectra within a linguistic
framework. OO methods and languages thus add a new
set of concepts to this aspect of Alexander's framework.
While the notion of variability within broad classifica-
tions permeates his writings, Alexander does not explic-
itly employ the idea of structured refinement through
subclassing. This probably stems from the fact that
there is no good reason for formalizing the concept in
architectural design, where there is little use in explic-
itly capturing the refinements between a pattern and
its realization. Instead, the pattern is (often gradually)
replaced by its realization. However, in software, these
intermediate forms can play all sorts of roles in devel-
opment, including use as branch points for alternative
specializations, bases for differential design, descriptions
of common protocols in OO frameworks, and a means
for swapping in one component for another.

ACM SIGSOFT Software Engineering Notes vol 19 no 1 Jan 1994 Page 45

Inhe r i t ance and Delegat ion . OO design techniques
incorporating various subclassing, delegation, and com-
position constructs conquer a potential obstacle found
in the application of pattern-based design in other
realms. Alexander's patterns provide a basis for de-
sign reuse without any necessary implications for com-
ponent reuse, thus limiting the routine generation and
predictable use of standardized components with known
cost and properties, and running into quality-control
problems intrinsic to reliance on one-shot implementa-
tions. This is generally not the case in OO design. Even
when an existing or standard component isn't what you
want, it often happens that alternative specializations,
delegation structures, and/or subclasses can share much
code via standard OO programming tactics. In fact,
this happens so often that OO programmers are sur-
prised, complain, and are sometimes unable to cope
when it does not (e.g., fairly often in concurrent OO
programming[39]).

A d a p t a t i o n and Reflect ion. Further out, OO con-
cepts may also help crystalize the senses of method-
ological unity, adaptation, openness, and reflection that
pervade Alexander's work. The lack of a crisp distinc-
tion between software "design" and "manufacturing"
already makes development practices harder to clas-
sify along the continuum from craftmanship to ana-
lytic engineering[34]. This becomes accentuated when
software systems themselves include provisions for self-
adaptation and redesign. So while it sounds overly
metaphysical to, for example, view buildings as clever
devices to propagate architects or blueprints (cf., [19,
21, 49]), in software these dualities have very practical
consequences. Work in OO and AI (e.g., [35, 31, 50, 30])
has led to reification and metalevel reasoning constructs
that, although by no means completely understood, al-
low creation of useful systems in which the borderlines
between designer, model, design, and product nearly
vanish, as is necessary for example in computer as-
sisted manufacturing (CAD/CAM/CIM)[ll], where the
market-driven trend has been to move away from sys-
tems that merely increase productivity or reduce defects
in mass-produced products. Instead, systems must rely
on both adaptive development methods and adaptive
software mechanisms to enable the reconfigurability re-
quired to obtain flexibility and user-perceived quality in
manufacturing small runs.

P rocess In tegra t ion . While OO process models re-
main underdeveloped, their potential synergy with
pattern-based models is obvious. The average OO devel-
oper personifies the builder-architect (hacker-designer?)

ethic at the heart of pattern-based development pro-
cesses. More than anything else, experiences with OO
versions of patterns have been the driving force lead-
ing OO researcher-practitioners to examine and exploit
the many relationships between the semantic bases, us-
ages, activities, and processes of OO and pattern-based
development. Most work is still in the exploratory
phase; including reconceptualizations of basic OO tech-
niques and idioms (e.g., those found in [17, 14, 20]), OO
frameworks([32]) and micro-architectures ([10, 26, 27]),
as well as the methods, processes, tools, formalizations,
development patterns, education, and social contexts
best supporting their development. It may yet turn out
that the ideas that have long isolated Alexander from
the mainstream commercial architectural community[9,
22] will find their widest and most enduring impact in
object-oriented software engineering.

R e f e r e n c e s

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[s]

[9]

[10]

[11]

[12]

[131

[14]

Alexander, C., Notes on the Synthesis of Form,
Harvard University Press, 1964.
Alexander, C., "A Refutation of Design Methodol-
ogy" (Interview with Max Jacobson), Architectural
Design, December, 1971.
Alexander, C., M. Silverstein, S. Angel, S.
Ishikawa, & D. Abrams, The Oregon Experiment,
Oxford University Press, 1975.
Alexander, C., S. Ishikawa, & M. Silverstein, A
Pattern Language, Oxford University Press, 1977.
Alexander. C., The Timeless Way of Building, Ox-
ford University Press, 1979.
Alexander. C., The Linz Care, Oxford University
Press, 1981.
Alexander. C., The Production of Houses, Oxford
University Press, 1985.
Alexander C., A New Theory of Urban Design, Ox-
ford University Press, 1987.
Alexander C., "Perspectives: Manifesto 1991",
Progressive Architecture, July 1991.
Anderson B., & P. Coad (Organizers), "Patterns
Workshop", OOPSLA '93.
Ayers, R., & D. Butcher, "The Flexible Factory Re-
visited", American Scientist, September-October
1993.
Basalla, G., The Evolution of Technology, Cam-
bridge University Press, 1988.
Bonine, J., "A Theory of Software Architecture De-
sign", unpublished draft manuscript, 1993.
Booth, G., Object Oriented Design with Applica-
tions, 2nd ed., Benjamin Cummings, 1993.

ACM SIGSOFT Softwaxe Engineering Notes vol 19 no 1 Jan 1994 Page 46

[15] Chermayetf, S., & C. Alexander, Community and
Privacy: 7bward a New Architecture of Humanism,
Doubleday, 1963.

[16] Civello, F., "Roles for Composite Objects in Ob-
ject Oriented Analysis and Design", Proceedings,
OOPSLA '93, ACM, 1993.

[17] Coplien, J., Advanced C-t-+: Programming Styles
and Idioms, Addison-Wesley, 1991.

[18] Dasgupta, S., Design Theory and Computer Sci-
ence, Cambridge University Press, 1991.

[19] Dawkins, R., The Selfish Gene, Oxford University
Press, 1976.

[20] de Champeaux, D., D. Lea, & P. Faure, Object Ori-
ented System Development, Addison-Wesley, 1993.

[21] Dennett, D., The Intentional Stance, Bradford
Books, 1987.

[22] Dovey, K., "The Pattern Language and its Ene-
mies". Design Studies, vol 11, p3-9, 1990.

[23] French, M. J., Invention and Evolution: Design in
Nature and Engineering. Cambridge, 1988.

[24] Galle, P., "Alexander Patterns for Design Comput-
ing: Atoms of Conceptual Structure?" Environ-
ment and Planning B: Planning and Design, vol
18, p327-346, 1991.

[25] Galle, P., "Computer Support of Architectural
Sketch Design: A Matter of Simplicity?" Environ-
ment and Planning B: Planning and Design, vol
21, 1994.

[26] Gamma, E., R. Helm, R. Johnson, & J. Vlis-
sides, "Design Patterns: Abstraction and Reuse
of Object-Oriented Designs", Proceedings, ECOOP
'93, Springer-Verlag, 1993.

[27] Gamma, E., R. Helm, R. Johnson, & J. Vlissides,
• Design Pat.terns, Addison-Wesley, forthcoming.

[28] Garey, M. & D. Johnson, Computers and In-
tractability, Freeman, 1979.

[29] Grabow, S., Christopher Alexander: The Search for
a New Paradigm, Oriel Press, 1983.

[30] Hamilton, G., M. Powell, & J. Mitchell. Subcon-
tract: A Flexible Base for Distributed Program-
ming. Sun Microsystems Laboratories Technical
Report Tlq;-93-13, 1993.

[31] Hewitt, C., P, Bishop, & R. Steiger, "A Univer-
sal Modular ACTOR Formalism for AI", Third In-
ternational Joint Conference on Artificial Intelli-
gence, Stanford University, August 1973.

[32] Johnson, R., "Documenting Frameworks Using
Patterns", Proceedings, OOPSLA 92, ACM, 1992.

[33] Jones, J. C., Design Methods, 2nd ed., Van Nos-
trand, 199'2.

[34] Karat, J. (ed), Taking Software Design Seriously:
Practical Techniques for Human-Computer Inter-
action Design, Academic Press, 1991.

[35] Kiczales, G., J. des Rivieres, & D.G. Bobrow, The
Art of the Metaobject Protocol, MIT Press, 1991.

[36] Lieberherr, K. & I. Holland, "Assuring Good Style
for Object-Oriented Programs", IEEE Software,
September 1989.

[37] Lucie-Smith, B., A History of Industrial Design,
Van Nostrand, 1983.

[38] March, L. (ed), The Architecture of Form, Cam-
bridge University Press, 1976.

[39] Matsuoka, S., K. Taura, & A. Yonezawa, "Highly
Efficient and Encapsulated Reuse of Synchroniza-
tion Code in Concurrent Object-Oriented Lan-
guages", Proceedings, OOPSLA '93, ACM, 1993.

[40] Norman, D., The Psychology of Everyday Things,
Basic Books, 1988.

[41] Parnas, D., "On the Criteria to be Used in the De-
composition of Systems into Modules", Communi-
cations of the ACM, December, 1972.

[42] Parnas, D., "Designing Software for Ease of Exten-
sion and Contraction" 1EEE Transactions on Soft-
ware Engineering, March 1979.

[43] Petroski, H., To Engineer is Human. St. Martin's
Press, 1982.

[44] Prieto-Diaz, R., & G. Arango (eds.), Domain Anal-
ysis: Acquisition of Reusable Information for Soft-
ware Construction, IEEE Computer Society Press,
1989.

[45] Rowe, P., Design Thinking. MIT Press, 1987.
[46] Sch5n, D., Educating the Reflective Practitioner,

Jossey-Bass, 1987.
[47] Schuler, D., & A. Namioka, Participatory Design,

Lawrence Erlbaum, 1993.
[48] Simon, H., The Sciences of the Artificial, MIT

Press, 1981.
[49] Steadman, P., The Evolution of Designs, Cam-

bridge University Press, 1979.
[50] Winograd, T., & F. Flores, understanding Com-

puters and Cognition: A New Foundation for De-
sign, Addison-Wesley, 1986.

[51] Wolfe, T., From Our House to Bauhaus, Pocket
Books, 1981.

