

Patterns of Software

Tales from the Software Community

Richard P. Gabriel

New York Oxford

OXFORD UNIVERSITY PRESS
1996

Oxford University Press

Oxford New York

Athens Auckland Bangkok Bogota

Bombay Buenos Aires Calcutta Cape Town

Dar es Salaam Delhi Florence Hong Kong Istanbul

Karachi Kuala Lumpur Madras Madrid

Melbourne Mexico City Nairobi Paris

Singapore Taipei Tokyo Toronto

and associated companies in

Berlin Ibaden

Copyright

 

1996 by Richard P. Gabriel

Published by Oxford University Press, Inc.,
198 Madison Avenue, New York, New York, 10016-4314

Oxford is a registered trademark of Oxford University Press

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,

electronic, mechanical, photocopying, recording, or otherwise,
without the prior permission of Oxford University Press.

Library of Congress Cataloging-in-Publication Data

Gabriel, Richard P.

Patterns of software: tales from the software community.

p. cm. Includes Bibliographical references

ISBN 0-19-5100269-X

1. Computer software—Development. 2. Object-oriented
programming (Computer science) I. Title.

QA76.76.D47G33 1996

005. 1—dc 2095-41883

1 3 4 5 7 9 8 6 4 2

Printed in the United States of America
on acid-free paper

To Jo Lawless, who led me away from the lion

Midway on our life’s journey, I found myself
In dark woods, the right road lost. To tell
About those woods is hard—so tangled and
rough

And savage that thinking of it now, I feel
the old fear stirring: death is hardly more bitter.

�

Preface

The essays in this book started out as a series of columns for the

Journal of Object-
Oriented Programming

. I was trying to model myself somewhat after Samuel
Johnson, and the series was aimed at being the digital age’s equivalent of

The
Rambler

. I’m certain I didn’t succeed in matching Johnson’s wit and style, but I
matched at least two of his characteristics—procrastination and laziness. Johnson
was well known for writing his essays right up to the deadline, often keeping the
publisher’s runner waiting for the manuscript as Johnson completed it. In fact,
you can notice the e

ff

ect in many of his essays: An essay starts to make an argu-
ment in one direction (corresponding to the first sheets Johnson handed the run-
ner) and then the argument shifts radically or even to the opposite pole as
Johnson continued writing and thinking—but revision of the earlier parts was
impossible, as it was being typeset for final copy as Johnson pondered.

For my essays I chose the stance of

critic at large

. In this role I attempted to
examine topics of interest to the object-oriented programming community from
the point of view of someone whose experience has always had a sour compo-
nent—this will be the subject of some of the essays. I had been working in the
object-oriented field for seven years when I started writing them.

Object-oriented programming has a very long history, which the newly initi-
ated sometimes finds surprising. First designed primarily as a means of simula-
tion, later as programming languages for children, object-oriented languages have
become nearly mainstream, largely as a means of achieving reuse and productiv-
ity.

You see, the history of computing is replete with attempts at making pro-
gramming easier and, more important, cheaper. Current software makes
machines of a sort previously unknown and with capabilities unheard of, partly
because there can be built into them some small portion of reason and consid-
eration and intelligent—rather than merely mechanical—reaction. Automo-

xiv

/

 P

REFACE

biles can run for dozens of thousands of miles without tuning because their
internal operation is governed by software—it’s almost more likely that your
car can be fixed by a Ph.D. in computer science than by your grandfather’s auto
mechanic.

When we start cataloging the gains in tools sitting on a computer, the benefits
of software are amazing. But, if the benefits of software are so great, why do we
worry about making it easier—don’t the ends pay for the means? We worry
because making such software is extraordinarily hard and almost no one can do
it—the detail is exhausting, the creativity required is extreme, the hours of failure
upon failure requiring patience and persistence would tax anyone claiming to be
sane. Yet we require that people with such characteristics be found and employed
and employed cheaply.

We’ve tried to make programming easier, with abstraction as a tool, with
higher-level programming languages, faster computers, design methodologies,
with rules of thumb and courses and apprenticeships and mentoring, with auto-
matic programming and artificial intelligence. Compilers, debuggers, editors,
programming environments. With structured programming and architectural
innovations.

With object-oriented programming.

But programming still requires people to work both alone and in teams, and
when people are required to think in order to achieve, inherent limitations rule.
Object-oriented programming—which is merely a set of concepts and program-
ming languages to support those concepts—cannot remove the need to think
hard and to plan things, to be creative and to overcome failures and obstacles, to
find a way to work together when the ego says not to, that the failures are too
many and too pervasive.

Reuse, productivity, reliability—these are values prized by managers and
moneymakers.

Software creators are usually called

engineers

, a connotation that usually brings
to mind a person who applies well-known principles and methods to create varia-
tions on known themes. For example, a bridge builder is an engineer who uses a
long list of known techniques to erect a structure to traverse rivers, chasms, and
rough terrain while supporting a certain load while withstanding natural forces
like wind and earthquakes.

Even though the word engineer comes from the same basic root as ingenuity
does, the feeling one gets when hearing the word is of careful, detailed, nearly
plodding predictability of work. This makes sense to a degree because engineering
disciplines frequently have handbooks from which they work that prescribe a
series of rules and principles and ways of solving problems according to a long
tradition and experience. For instance, bridge builders have centuries of experi-
ence bridge building to draw upon.

P

REFACE

/

 xv

Building software—some call it

software engineering

—is only 30 or 40 years
old, and it shares with other engineering disciplines virtually nothing. Engineer-
ing teams for bridge building are composed of well-known roles whereas in soft-
ware we are still experimenting. While building bridges, known solutions are
adapted to the situation at hand whereas in software we frequently need to invent
new techniques and technology. What’s easy and hard is not known, and there are
very few physical principles to guide and constrain us.

To emphasize this, consider that not only is there a large set of principles for
bridge building but there are hundreds of known examples of bridges and even
we, as laypeople, know of some of the best examples and even one of the worst—
the Tacoma Narrows Bridge, which catastrophically collapsed 50 years ago. But in
software, there isn’t even a literature of programs that programmers know and
can talk about.

The Tacoma Narrows Bridge—let’s think about it for a minute. This was a
bridge built in Washington State across a strait in the 1940s. Because of the gorge
it spanned, it was subject to strong winds. The engineers who built it adapted a
design used on the East Coast that was known to be able to withstand strong
wind. However, the designers added a feature for pedestrians, a low windbreak
about the height of a guardrail that would protect people and cars from the wind.
But as soon as this fence was built, the bridge started oscillating from the wind,
which flowed over it like an airfoil.

After a few months on a day when the wind was particularly strong and at a
particular speed, the airfoil started to oscillate wildly, and the bridge collapsed.
The incident was captured on newsreels. The only casualty was a dog who would
not get out of a car when its master tried to coax him out to safety.

Even though it was a disaster, the methodology was to modify an existing solu-
tion, and when it failed its failure was analyzed. How often does that happen in
software? Almost never, because such failures are simply locked away and forgot-
ten—perhaps the folks who participated learn something, but the project is rarely
viewed by people outside the project, and there is little interest in the failure itself
except perhaps because of its e

ff

ects on the organization that sponsored it.

So yes, we are engineers in the sense of using cleverness and inventiveness to
create an artful engine that is itself clever. But we don’t have—perhaps yet—the
inherent predictability of schedules and results to be engineers in the sense most
people, especially businessfolk, expect.

One of my goals in writing these essays was to bring out the reality of commer-
cial software development and to help people realize that right now software
development—except when a project essentially is creating a near variant of an
existing program—is in a state where the artifact desired is brand new and its
construction is unknown, and therefore the means to approach its construction is
unknown and possibly di

ffi

cult to ascertain; and, furthermore, a group of people

xvi

/

 P

REFACE

is trying to work together—maybe for the first time—to accomplish it. An image
I like to use is that every large software project is similar to the first attempt to
build a flying-buttress construction cathedral. Imagine how many of them col-
lapsed before we figured out how to build them.

Software development is done by people with human concerns; although
someday this component will be a smaller part of the total picture, today it is the
high-order bit. The software community approaches these issues with high hopes
and a pride in the term engineer. I approach it as a critic.

Let me turn to what I hoped to accomplish as a critic at large. I start with a
quote from Samuel Johnson’s

The Idler

:

Criticism is a study by which men grow important and formidable at
a very small expence. The power of invention has been conferred by
nature upon few, and the labour of learning those sciences which may
by mere labour be obtained is too great to be willingly endured; but
every man can exert such judgement as he has upon the works of oth-
ers; and he whom nature has made weak, and idleness keeps igno-
rant, may yet support his vanity by the name of a Critick.

 (Number

60, Saturday, June 9, 1759)

A critic, at his best, aims at raising questions that otherwise might remain hid-
den. The role of a critic is to look at things in new ways, to present a perspective
that others with less time on their hands can use as the basis for real progress, to
ask the question that turns the course of inquiry from a backwater whirlpool
toward rapids of exciting new work.

So don’t look to these essays for answers—I planned not to, and yet dare not,
claim new insight or wisdom: You have to find that for yourself or within yourself.
I claim only to be able to expand the playing field to include new considerations
and maybe new perspectives.

However, be warned: Nothing is o

ff

 limits for me. There are no dead ends I
won’t go down, no agreements I’ll honor about what’s on or o

ff

 limits. Every idea
out there is fair game—yours included.

But don’t worry that your pet idea will be abused or harmed—again Johnson:

This profession has one recommendation peculiar to itself, that it
gives vent to malignity without real mischief. No genius was ever
blasted by the breath of criticks. The poison which, if confined, would
have burst the heart, fumes away in empty hisses, and malice is set at
ease with very little danger to merit. The Critick is the only man
whose triumph is without another’s pain, and whose greatness does
not rise upon another’s ruin.

The bias I started with in these essays was this:

P

REFACE

/

 xvii

The promise of object-oriented programming—and of programming lan-
guages themselves—has yet to be fulfilled. That promise is to make plain to com-
puters and to other programmers the communication of the computational
intentions of a programmer or a team of programmers, throughout the long and
change-plagued life of the program. The failure of programming languages to do
this is the result of a variety of failures of some of us as researchers and the rest of
us as practitioners to take seriously the needs of people in programming rather
than the needs of the computer and the compiler writer. To some degree, this fail-
ure can be attributed to a failure of the design methodologies we have used to
guide our design of languages, and to larger degree it is due to our failure to take
seriously the needs of the programmer and maintainer in caretaking the code for
a large system over its life cycle.

� � �

This book is broken into five parts:

•

Patterns of Software

•

Languages

•

What We Do

•

Life of the Critic

•

Into the Ground

“Patterns of Software” explores the work of the architect Christopher Alex-
ander as it relates to the creation of software. Christopher Alexander has spent the
bulk of his professional life—from around 1960 through the mid-1990s—trying
to find the way that those who build buildings, cities, and towns also create
beauty and what Alexander calls the

quality without a name

.

Over the last decade, the computer software community discovered Alexander
and his concept of

pattern languages

 and has tried to incorporate those ideas into
software design. The essays in this part examine Alexander’s quest for the quality
without a name and for beauty and try to see what connections to software, espe-
cially object-oriented software, are appropriate.

“Languages” looks at programming languages and how software developers
use and react to them. The choice of a programming language seems as sacred
and personal as the choice of religion, and that choice often favors languages
whose performance characteristics match computer architecture capabilities
rather than the capabilities of the people who use programming languages.

“What We Do” sketches the activities we as computer scientists and software
developers do and how folks outside our community view us. Here I talk a little
bit about writing—which is dear to me—and how our assumptions about the

xviii

/

 P

REFACE

obviousness of the importance of what we do might not be and is not shared by
the rest of the world.

“Life of the Critic” is an intellectual autobiography in which I hope to show
how I arrived at my views and why I drifted toward the role of critic. I also hope
to show that you don’t have to start out with a silver spoon in your mouth to be
able to make a contribution to humanity—that even someone with as checkered
and failure-ridden past as I have can contribute. Many times in my life I despaired
when I compared my progress with that of my fellows who never seemed to have
had a slip in their careers, and part of my goal, therefore, is to show that someone
of average intelligence and talents can do well, even in our modern world.

“Into the Ground” is the story of the company I founded—from its birth in
1984 until its death in 1994. The lessons to be learned from this experience center
on the fact that the company carried out its technical agenda perfectly yet it failed
miserably, and accompanied by circumstances almost unprecedented in Silicon
Valley startup history.

My overall bias is that technology, science, engineering, and company organi-
zation are all secondary to the people and human concerns in the endeavor. Com-
panies, ideas, processes, and approaches ultimately fail when humanity is
forgotten, ignored, or placed second. Alexander knew this, but his followers in the
software pattern language community do not. Computer scientists and develop-
ers don’t seem to know it, either.

These essays . . . these essays aim to correct that.

� � �

I would like to thank Christopher Alexander for his deep, prophetic work on
architecture, patterns, and beauty; for writing the Foreword; and for providing
original art. Katalin Bende, in Alexander’s office, was most gracious in providing
assistance with the artwork.

Some essays are reprinted with permission from the Journal of Object-Ori-
ented Programming (copyright © 1991–1993 SIGS Publications, 71 West Twenty-
third Street, Third floor, New York, New York 10010). Quotes from

 Christopher
Alexander: The Search for a New Paradigm in Architecture

by Stephen Grabow
were provided by permission from International Thomson Publishing Services
Ltd.

Bill Zobrist, Krysia Bebick, and Irene Pavitt of Oxford University Press pro-
vided tremendous editorial assistance and support during the preparation of this
book.

Mountain View, Calif.

R.P.G.

�

Contents

I.

Patterns of Software

Reuse Versus Compression 3

Habitability and Piecemeal Growth 9

Abstraction Descant 17

The Quality Without a Name 33

Pattern Languages 45

The Failure of Pattern Languages 57

The Bead Game, Rugs, and Beauty 71

II. Languages

Language Size 99

The End of History and the Last Programming Language 111

Productivity: Is There a Silver Bullet? 123

III. What We Do

What We Do 135

Writing Broadside 139

IV. Life of the Critic

A Personal Narrative: Journey to Stanford 147

A Personal Narrative: Stanford 159

xx

/

C

ONTENTS

V. Into the Ground

Into the Ground: Lisp 175

Into the Ground: C++ 195

Money Through Innovation Reconsidered 215

Epilogue 231

References 233

P

ART

 I

�

P

ATTERNS

OF

 S

OFTWARE

3

�
Reuse Versus Compression

Maybe it’s my failing memory, but I recall that the hook that grabbed the main-
stream world and pulled it toward object-oriented programming was reuse. One
of the larger problems that development managers face is how to get big software
projects done fast. Most people agree that maintenance is a big part of the overall
software problem, but to organizations whose survival depends on getting out
new projects or products, the important issue is getting the new software done.

Within each organization writing a lot of software—and among many organi-
zations writing a lot of software—it seems that a lot of that software should be
reusable. If this were true, then it would be possible to take some of the code that
already exists and put it toward the new project, thereby reducing the time to pro-
duce the desired software, Furthermore, if code is reused, it is more likely to be
well tested and possibly bug free, and even if it isn’t, the maintenance of the vari-
ous programs that use the reused code should be easier.

Reuse is not a new idea. For decades languages have supported the notion of
libraries. A library is a set of subroutines, usually in a particular application area.
Old examples are the scientific subroutine libraries for Fortran. A similar idea is
the Collected Algorithms published by ACM years ago in an ALGOL-like publica-
tion language. I remember when I was a kid in 1968 looking up algorithms for
sorting and searching in my first programming job.

However, what every manager learns is that reuse under these circumstances
requires a process of reuse or at least a policy. First, you need to have a central
repository of code. It doesn’t help if developers have to go around to other devel-
opers to locate code you might be able to use. Some organizations are small
enough that the developers can have group meetings to discuss needs and sup-
plies of code.

Second, there has to be a means of locating the right piece of code, which usu-
ally requires a good classification scheme. It does no good to have the right piece

4 / PATTERNS OF SOFTWARE

of code if no one can find it. Classification in the world of books, reports, maga-
zines, and the like is a profession, called cataloging. Librarians help people find
the book . But few software organizations can afford a software cataloger, let alone
a librarian to help find the software for its developers. This is because when a
development manager has the choice of hiring another developer or a software
librarian, the manager will always hire the developer. It’s worth looking at why
this is, and I’ll return to it later.

Third, there must be good documentation of what each piece of code in the
repository does. This includes not only the interface and its purpose but also
enough about the innards of the code—its performance and resource use—to
enable a developer to use it wisely. A developer must know these other things, for
example, in order to meet performance goals. In many cases such documentation
is just the code itself, but this information could be better provided by ordinary
documentation; but again, a development manager would prefer to hire a devel-
oper rather than a documentation person.

For a lot of pieces of code it is just plain simpler to write it yourself than to go
through the process of finding and understanding reusable code. Therefore, what
development managers have discovered is that the process-oriented world of
reuse has too many barriers for eff ective use.

Looking at the nature of this approach to reuse we can see that it is focused on
reusing code from one project to another rather than within a project; the mecha-
nism for reuse is an organization-wide process.

Enter object-oriented programming. The primary point of object-oriented
programming is to move the focus of program design from algorithms to data
structures. In particular, a data structure is elevated to the point that it can con-
tain its own operations.

But such data structures—called objects—often are related to one another in a
particular way: One is just like another except for some additions or slight modi-
fications. In this situation, there will be too much duplication if such objects are
completely separate, so a means of inheriting code—methods—was developed.

Hence we see the claim of reuse in object-oriented languages: When writing a
single program, a programmer reuses code already developed by inheriting that
code from more general objects or classes. There is a beauty to this sort of reuse: It
requires no particular process because it is part of the nature of the language.

In short, subclassing is the means of reuse.

Despite this simplified view of reuse, the idea that object-oriented languages
have reuse as part of their very essence proved to be a large attraction to the main-
stream community. To be sure, there were other attractions as well; here are some:

• Objects and classes of objects are a natural way for programmers to organize
programs.

REUSE VERSUS COMPRESSION / 5

• Systems written with objects and classes are simpler to extend and customize
than traditionally constructed ones.

� � �

However, the form of reuse in object-oriented languages hardly satisfies the broad
goals of software development. What I want to suggest is a better word than reuse
and maybe a better concept for the reuse-like property of object-oriented lan-
guages.

The word (and concept) is compression. Compression is the characteristic of a
piece of text that the meaning of any part of it is “larger” than that piece has by
itself. This is accomplished by the context being rich and each part of the text
drawing on that context—each word draws part of its meaning from its sur-
roundings. A familiar example outside programming is poetry whose heavily lay-
ered meanings can seem dense because of the multiple images it generates and the
way each new image or phrase draws from several of the others. Poetry uses com-
pressed language.

Here is a simple single-sentence example: My horse was hungry, so I filled a
morat with oats and put it on him to eat.

This sentence is compressed enough that the meaning of the strange word
morat is clear—it’s a feed bag. Pronouns work because of compression.

Compression in object-oriented languages is created when the definition of a
subclass bases a great deal of its meaning on the definitions of its superclasses. If
you make a subclass of a class which adds one instance variable and two methods
for it, the expression of that new class will be simply the new variable, two meth-
ods, and a reference to the existing class. To some, the programmer writing this
subclass is reusing the code in the superclass, but a better way to look at it is that
the programmer is writing a compressed definition, the bulk of whose details are
taken from the context in which the superclass already exists.

To see this, note that the subclass definition is frequently some distance from
the superclass definition, and so the programmer is relying on knowledge of the
superclass to write the shorthand definition.

Compressed code has an interesting property: The more of it you write—the
further down the class hierarchy you go—the more compressed the new code
becomes. This is good in at least one way: Adding new code is very compactly
done. For a development manager this can mean that the new code can be written
more quickly.

Here is where the change of perspective can help us: Compression has clear
disadvantages, and these disadvantages can help explain why object-oriented lan-
guages have not solved the software problem (of course, there are many reasons,
but this is just the first essay, after all).

6 / PATTERNS OF SOFTWARE

Compression is a little dangerous because it requires the programmer to
understand a fair amount about the context from which compressed code will
take its meaning. Not only does this require available source code or excellent
documentation, but the nature of inherited language also forces the programmer
to understand the source or documentation. If a programmer needs a lot of con-
text to understand a program he needs to extend, he may make mistake because
of misunderstandings.

Furthermore, even if the new code—the compressed code—is compact, it will
take at least as much time and effort to write as it would to write the uncom-
pressed code, unless the overall complexity and size of the total code is small or
unless the person writing the code has the existing code firmly in mind.

Maintaining compressed code requires understanding its context, which can
be difficult. The primary feature for easy maintenance is locality: Locality is that
characteristic of source code that enables a programmer to understand that
source by looking at only a small portion of it. Compressed code doesn’t have this
property, unless you are using a very fancy programming environment.

Compression has another obvious problem. If you build derived code that
tightly depends on some base code, then changing the base code can be expensive
and dangerous. If the developer of the base code is not the same person as the
developer of derived code, the derived code can be in jeopardy. This is just the
problem of all by-reference relationships. Compression in poetry is fine because
the ultimate definitions of the words and phrases are outside the poet’s mind. Not
so for compression in programs: The meanings of the words—the classes—are
determined by the programmer. This problem is not unique to class-based com-
pression but applies to any abstraction-based compression.

I don’t want to imply that compression is bad—in fact, it is an important
resource for incremental definition—but abstractional problems like the risk of
changing base code can get in the way.

Compression doesn’t help interproject reuse, because to do so requires export-
ing classes that can be reused. This simply lands us in the classic reuse situation
we had earlier, in which the primary barrier to reuse is one of process rather than
of technology.

� � �

Remember I stated that a development manager will always hire a developer over
someone whose job is to eff ect reuse. Why is this?

Some of the reasons should now be apparent. First, reuse is easiest within a
project instead of between them. A manager’s success depends on performance
on a given project and not on performance over several projects. And preparing
code for reuse requires additional work, not only by the reuse expert but also by
developers. Therefore, preparing for reuse has a cost for any given project.

REUSE VERSUS COMPRESSION / 7

Finally, a project’s success often depends at least partly on the performance of
the code that is developed. The development manager knows that plenty of code
to be developed really is diff erent from existing code if for no other reason than
the new code has to be specialized to the particular situation to be fast enough.
Therefore, in this situation reuse doesn’t help very much.

What we’ve seen is that reuse is properly a process issue, and individual orga-
nizations need to decide whether they believe in its long-term benefits. Object-
oriented languages provide compression, which can substitute for reuse within a
program, but at a cost in maintenance.

Compression is not reuse, and both reuse and compression have their costs
and savings.

9

�
Habitability and Piecemeal Growth

The sun paints the scattered clouds red, paints the hills across the Bay
a deeper red. Moment by moment the sun’s light flares windows in
the hills, moving upward as twilight approaches. The programmer
looks up from his screen to watch. He sees headlights moving one way
and taillights the other along either side of the highway spine. Home-
lights click on, and the Bay is a silhouette. His daughter: Will she be
too petrified to dance? Will she miss the cue? If only he could help her
pass by her fear. Reaching to the right of the mouse, he lifts his Coke
and drains it, saves his buff ers, drifts his eyes to the sensual move-
ment of the highway, pausing his mind as it passes over a detail in the
code he’s just typed. The thought passes before crystallizing, so he puts
the CDs in his blue Kelty pack—and heads for the recital.

Code is written by people. And people have a lot on their minds, they have lives to
lead, and those lives intrude on their thinking. You might pay a developer for a
full eight-hour day, but how much of that day is truly yours? Of course, not all of
us are software development managers, but the concerns of these managers
should rightfully be concerns of ours—concerns of language designers. The
astute software manager knows that just about every programmer except the
pathological workaholic trades his hours of overtime for hours of undertime. The
manager goes all out to ensure that the needs of the developer are met—home
terminals, sunny offices, minimal meetings, meals during the big push, and a
healthy ego boost from time to time.

If the software manager knows that people and their habits are the determin-
ing factor in software development, why don’t language and system designers?
Here is what Stroustrup says about the design of C++:

C++ is a general purpose programming language designed to make
programming more enjoyable for the serious programmer. (Strous-

trup 1987)

10 / PATTERNS OF SOFTWARE

This is an interesting idea—no doubt it would be a surprise to most C++ pro-
grammers. But, Stroustrup goes on a little more honestly to say:

C++ retains C’s ability to deal efficiently with the fundamental
objects of the hardware (bits, bytes, words, addresses, etc.). This
allows the user-defined types to be implemented with a pleasing
degree of efficiency. . . . Features that would incur run-time or mem-
ory overheads even when not used were avoided. . . . C++ types and
data-hiding features rely on compile-time analysis of programs to
prevent accidental corruption of data. . . . They can, however, be used
freely without incurring run-time or space overheads.
(Stroustrup 1987)

I suppose that the enjoyable part of programming that Stroustrup refers to is the
pleasing degree of efficiency that a program acquires when it has no run-time or
space overhead.

Like Stroustrup, R. D. Tennent starts out with an admirable goal for program-
ming languages:

A programming language is a system of notation for describing com-
putations. A useful programming language must therefore be suited
for both describing (i.e., for human writers and readers of programs)
and for computation (i.e., for efficient implementation on comput-
ers). But human beings and computers are so diff erent that it is diffi-

cult to find notational devices that are well suited to the capabilities
of both. Languages that favor humans are termed high-level, and
those oriented to machines low-level. (Tennent 1981)

He goes on to describe machine language as the most “powerful” low-level
language, but he tellingly remarks:

It might be thought that “natural” languages (such as English and
French) would be at the other extreme. But, in most fields of science
and technology, the formalized notations of mathematics and logic
have proved to be indispensable for precise formulation of concepts
and principles and for eff ective reasoning. (Tennent 1981)

Precise formulation and eff ective reasoning—again, not exactly what I had in
mind. Finally, let’s look at Modula-3, a modern, enlightened language:

Modula-3 is a modern, general-purpose programming language. It
provides excellent support for large, reliable, and maintainable appli-
cations. . . . The nature of programming has changed. For many years
we were puzzle-solvers, focused on turning algorithms into sets of
instructions to be followed by a computer. We enjoyed solving these

HABITABILITY AND PIECEMEAL GROWTH / 11

puzzles, and we often viewed both the complexity of the puzzle and
the obscurity of the solution as evidence of our skill. . . . Aware of our
human limitations, we have come to view complexity and obscurity
as faults, not challenges. Now we write programs to be read by people,
not computers. (Harbison 1992)

This is the best start, and its finish is not bad either:

There is a pleasure in creating well-written, understandable pro-
grams. There is a satisfaction in finding a program structure that
tames the complexity of an application. We enjoy seeing our algo-
rithms expressed clearly and persuasively. We also profit from our
clearly written programs, for they are much more likely to be correct
and maintainable than obscure ones. (Harbison 1992)

Although I think the goal of Modula-3 is not ideal, it is better than the precise
formulation goal that Tennent advocates, and it is in a diff erent league from
Stroustrup’s pleasure of efficiency.

There is, I think, a better goal, to which I want to draw your attention. It’s a
characteristic of software that you’ve perhaps not thought of and which perhaps
should have some influence over the design of programming languages and cer-
tainly of software methodology. It is habitability.

Habitability is the characteristic of source code that enables programmers,
coders, bug-fixers, and people coming to the code later in its life to understand its
construction and intentions and to change it comfortably and confidently. Either
there is more to habitability than clarity or the two characteristics are diff erent.
Let me talk a little bit more about habitability before I tackle what the diff erence
may be.

Habitability makes a place livable, like home. And this is what we want in soft-
ware—that developers feel at home, can place their hands on any item without
having to think deeply about where it is. It’s something like clarity, but clarity is
too hard to come by.

Habitability is related to a concept called organic order that Christopher Alex-
ander, the architect, uses in his work:

Organic Order: . . . the kind of order that is achieved when there is a
perfect balance between the needs of the parts and the needs of the
whole. (Alexander 1975)

How are architecture and software related?
I’ve heard Gregor Kiczales—one of the CLOS designers—say that he wishes

that computer science practice could reach the level of engineering excellence that
creates buildings like the Superdome in New Orleans. He points out that the
design of the Superdome puts together pieces made from a variety of materials

12 / PATTERNS OF SOFTWARE

and from a range of engineering and building disciplines. The result is a monu-
ment to that engineering skill. This is a tempting picture, but I think it’s off base.

Buildings like the Superdome lack habitability. In this instance people inhabit
the building, but only for very short periods of time, and for very special occa-
sions—and such buildings are not easily grown or altered. The Superdome is a
static building, and therefore it can stand as a monument, being little else.

A modern skyscraper, to take another example, has a fixed inflexible interior,
which is secondary to the designed beauty of the exterior. Little attention is paid
to the natural light, and often the interiors are constructed as “flexible office
space,” which means cubicles. The flexibility is for management to set up offices
for the company, not for the inhabitants—the employees—to tailor their own
space. When you run out of space in the skyscraper, you build another; you don’t
modify the existing one or add to it.

Contrast this with the New England farmhouse. It starts as a small home with
a barn out back. As the family grows and the needs of the farm grow, a back room
is added to the house, then a canning room, then a room for grandma; stables are
added to the barn, then a wing for milking more cows. Finally the house and barn
are connected because it is too difficult to get from the house to the barn in a bliz-
zard. The result is rambling, but each part is well-suited to its needs, each part fits
well with the others, and the result is beautiful because it is a living structure with
living people inside. The inhabitants are able to modify their environment
because each part is built according to familiar patterns of design, use, and con-
struction and because those patterns contain the seeds for piecemeal growth.

I think this should be the goal for computer science practice. Most program-
ming languages are excellent for building the program that is a monument to
design ingenuity—pleasingly efficient, precise, and clear—but people don’t build
programs like that. Programs live and grow, and their inhabitants—the program-
mers—need to work with that program the way the farmer works with the home-
stead.

This, I think, is the challenge of programming language design in the next gen-
eration: to recognize, finally, what programming really is and to address those
issues, not issues of elegance and monumental programs.

What are some of the things that contribute to uninhabitable programs? Over-
use of abstraction and inappropriate compression come to mind. But that’s a
topic for another day; today is just to explore the concepts of habitability and
piecemeal growth.

In Alexander’s definition of organic order applied to software, the concept of
“needs of the whole” refers to the grand design or architecture of the piece of soft-
ware under development, and “needs of the parts” refers to the inevitable changes
the various parts of the software undergo. It’s difficult to change the grand design
of software: You cannot expect to evolve a window system into a spreadsheet.

HABITABILITY AND PIECEMEAL GROWTH / 13

Although the primary need of the whole is to remain true to its essence, the parts
often must change. For instance, one sort of window system could evolve into
another.

Software needs to be habitable because it always has to change. Software is sub-
ject to unpredictable events: Requirements change because the marketplace
changes, competitors change, parts of the design are shown wrong by experience,
people learn to use the software in ways not anticipated. Notice that frequently
the unpredictable event is about people and society rather than about technical
issues. Such unpredictable events lead to the needs of the parts which must be
comfortably understood so they can be comfortably changed.

Consider bugs. Many a bug is the result of not anticipating a particular event
or use and is not the result of a mistake—bugs are not always errors. Bugs tell us
that we are not capable of producing a master plan. A master plan is a detailed
design, and many projects consider critical their detailed designs. But a master
plan is usually not possible, especially for extensive, long-lived software. Alex-
ander writes:

It is simply not possible to fix today what the environment should be
like [in the future], and then to steer the piecemeal process of devel-
opment toward that fixed, imaginary world. (Alexander 1975)

This simply acknowledges that it is impossible to predict the circumstances of
a long-lived program. But there is a more important point:

Master plans have two additional unhealthy characteristics. To begin
with, the existence of a master plan alienates the users. . . . After all,
the very existence of a master plan means, by definition, that the
members of the community can have little impact on the future shape
of their community, because most of the important decisions have
already been made. In a sense, under a master plan people are living
with a frozen future, able to aff ect only relatively trivial details.
When people lose the sense of responsibility for the environment they
live in, and realize that there are merely cogs in someone else’s
machine, how can they feel any sense of identification with the com-
munity, or any sense of purpose there?

Second, neither the users nor the key decision makers can visualize
the actual implications of the master plan. (Alexander 1975)

It should be clear that, in our context, a “user” is a programmer who is called
upon to maintain or modify software; a user is not (necessarily) the person who
uses the software. In Alexander’s terminology, a user is an inhabitant. A client or
software user certainly does not inhabit the code but instead uses its external

14 / PATTERNS OF SOFTWARE

interface; such a software user would be more like the city sewer, which hooks up
to a building but doesn’t live in it.

Several points come to mind. First, when you design software, let the imple-
menters complete those parts of the design for which they are responsible.

Second, have you ever heard a good manager ask the group he or she manages
“who owns this?” It’s because the manager knows that the excellent employee
needs to feel he or she has some authority over what they are responsible for. Fur-
ther, a well-knit group has this same sense of ownership over what they work on
plus a bond of “elitism” that holds them together and makes each member of the
team feel responsible for the others’ success.

Third, how do you enable a programmer to feel responsible for software devel-
oped earlier? Here is where habitability comes in. Just as with a house, you don’t
have to have built or designed something to feel at home in it. Most people buy
houses that have been built and designed by someone else. These homes are hab-
itable because they are designed for habitation by people, and peoples’ needs are
relatively similar. As I said earlier, a New England farmhouse is habitable, and the
new owner feels just as comfortable changing or adapting that farmhouse as the
first farmer was. But a home designed by Frank Lloyd Wright—though more hab-
itable than most “overdesigned” homes—cannot be altered because all its parts
are too rigidly designed and built. The needs of the whole have overshadowed the
needs of the parts and the needs of the inhabitants.

Finally, if Alexander’s lesson applies to software, it implies that a development
project ought to have less of a plan in place than current thinking allows. This
provides a mechanism for motivation and a sense of responsibility to those devel-
opers who later must work with the code.

Alexander goes on:

The principle of organic order: Planning and construction [imple-
mentation, in our context] will be guided by a process which allows
the whole to emerge gradually from local acts. (Alexander 1975)

This just piecemeal growth. Here is how Alexander puts it:

[E]ach new building is not a “finished” thing. . . . They are never torn
down, never erased; instead they are always embellished, modified,
reduced, enlarged, improved. This attitude to the repair of the envi-
ronment has been commonplace for thousands of years in traditional
cultures. We may summarize the point of view behind this attitude in
one phrase: piecemeal growth. (Alexander 1975)

Piecemeal growth is a reality. What gets in its way and prevents software habit-
ability is overdesign, overabstraction, and the beautiful, taut monument of soft-
ware. Alexander calls this large lump development:

HABITABILITY AND PIECEMEAL GROWTH / 15

Large lump development hinges on a view of the environment which
is static and discontinuous; piecemeal growth hinges on a view of the
environment which is dynamic and continuous. . . . According to the
large lump point of view, each act of design or construction is an iso-
lated event which creates an isolated building—“perfect” at the time
of its construction, and then abandoned by its builders and designers
forever. According to the piecemeal point of view, every environment
is changing and growing all the time, in order to keep its use in bal-
ance; and the quality of the environment is a kind of semi-stable
equilibrium in the flux of time. . . . Large lump development is based
on the idea of replacement. Piecemeal growth is based on the idea of
repair. (Alexander 1975)

Recall that one of the tenets of encapsulation is that the interface be separate

from the implementation because this permits the implementation to be replaced

when needed.

The problem with traditional approaches to abstraction and encapsulation is

that they aim at complete information hiding. This characteristic anticipates

being able to eliminate programming from parts of the software development

process, those parts contained within module boundaries. As we've seen, though,

the need to program is never eliminated because customization, modification,

and maintenance are always required—that is, piecemeal growth.

A better goal is to minimize or reduce the extent of programming, which

implies providing mechanisms that allow small changes to largely already correct

code.

One of the primary reasons that abstraction is overloved is that a completed

program full of the right abstractions is perfectly beautiful. But there are very few

completed programs, because programs are written, maintained, bugs are fixed,

features are added, performance is tuned, and a whole variety of changes are

made both by the original and new programming team members. Thus, the way a

program looks in the end is not important because there is rarely an end, and if

there is one it isn’t planned.

What is important is that it be easy for programmers to come up to speed with

the code, to be able to navigate through it eff ectively, to be able to understand

what changes to make, and to be able to make them safely and correctly. If the

beauty of the code gets in the way, the program is not well written, just as an office

building designed to win design awards is not well designed when the building

later must undergo changes but those changes are too hard to make. A language

(and an accompanying environment) is poorly designed that doesn’t recognize

this fact, and worse-still are those languages that aim for the beauty and elegance

of the (never) finished program.

16 / PATTERNS OF SOFTWARE

Habitability is not clarity, I think. If it were, then Modula-3 would hit the nail
on the head. Clarity is just too rare, and it’s dangerous, too, in a funny way.

Books on writing tell you to be clear and simple, to use plain language. What
can this mean? It is no advice at all because no one would ever try to be muddy
and complex, to use obscure language as part of an honest attempt to be under-
stood. But clarity is a quality that is rarely achieved—rare because it is difficult to
achieve. However, even though only the rare writer or poet throws off an occa-
sional clear sentence or paragraph, many of us are able to be understood with lit-
tle problem, because our writing is habitable—not great, but easy enough to read,
easy enough to change.

The danger of clarity is that it is uncompromised beauty; and it’s real tough to
to improve uncompromised beauty. Many second- and third-rate sculptors can
fix a decent sculpture—I saw a group of them one summer making replacement
gargoyles for Notre Dame Cathedral in Paris—but which of them would dare
repair Michelangelo’s David? Who would add a skyscraper to the background of
Mona Lisa? Who would edit Eliot’s poems? Clarity is dangerous.

If a programming language is optimized for the wrong thing—like pleasing
efficiency, mathematical precision, or clarity—people might not be able to live
with in or in it: It isn’t habitable, piecemeal growth isn’t possible, and the pro-
grammers who must live in the software feel no responsibility or ownership.

17

�
Abstraction Descant

The room fills with cold, conditioned air; outside the heat hazes, fil-
tered through greened glass windows: a new building hardly first-
populated. The speaker is wild-eyed, explaining new ideas like a
Bible thumper. His hair is a flat-top; his mouth frowns in near gri-
mace. He strides to my seat, looks down and says in a Texas drawl,
“and the key is simply this: Abstractions. New and better abstrac-
tions. With them we can solve all our programming problems.”
 (Gabriel and Steele 1990)

This scene, which occurred in the late 1980s, began my off-and-on inquiry into

the good and bad points of abstraction. All through my computer science educa-

tion, abstraction was held up as the bright, shining monument of computer sci-

ence. Yet when discussed in essays on the philosophy of science, abstraction is

routinely questioned. Here is what Paul Feyerabend says about Ernst Mach, scien-

tist and philosopher:

We have seen that abstraction, according to Mach, “plays an impor-
tant role in the discovery of knowledge.” Abstraction seems to be a
negative procedure: real physical properties . . . are omitted. Abstrac-
tion, as interpreted by Mach, is therefore “a bold intellectual move.”
It can misfire, it “is justified by success.” (Feyerabend 1987)

Throughout the book abstraction is discussed in terms of its relation to reality

and to the “interests” of those who develop them. Here is what Bas Van Fraassen

says:

But in certain cases, no abstraction is possible without losing the very
thing we wish to study. . . .Thus [study at a certain level] can only go

18 / PATTERNS OF SOFTWARE

so far—then it must give way to less thorough abstraction (that is, a
less shallow level of analysis). (Van Fraassen 1980)

Both Van Fraassen and Feyerabend seem to subscribe to the notion that abstrac-

tion in the realm of science—I doubt they would include computer science—is

about ignorance. Abstraction ignores or omits certain things and operates at a

shallow level of analysis.

The following is the definition of abstraction in computer science that I’ve

used for years:

Abstraction in programming is the process of identifying common
patterns that have systematic variations; an abstraction represents
the common pattern and provides a means for specifying which vari-
ation to use.

An abstraction facilitates separation of concerns: The implemen-
tor of an abstraction can ignore the exact uses or instances of the
abstraction, and the user of the abstraction can forget the details of
the implementation of the abstraction, so long as the implementation
fulfills its intention or specification. (Balzer et al. 1989)

This definition does not directly mention ignorance or omission, though it

does imply them. The common pattern is omitted—in most types of abstraction

the common pattern is replaced by a name, such as function name, a macro

name, or a class name. The structure and behavior of the common pattern is lost

except that the name of the abstraction denotes it and the definition of the

abstraction (its implementation) contains it. And the foregoing definition does

mention the interests of particular people—abstraction implementers and

abstraction users.

Although I will return to the themes brought out by Feyerabend and Van

Fraassen later, first I will set the scene. In the first two essays in this book I looked

at three new concepts for programming: compression, habitability, and piecemeal

growth, defined as follows:

Compression is the characteristic of a piece of text that the meaning
of any part of it is “larger” than that particular piece has by itself.
This characteristic is created by a rich context, with each part of the
text drawing on that context—each word draws part of its meaning
from its surroundings.

Habitability is the characteristic of source code that enables pro-
grammers, coders, bug-fixers, and people coming to the code later in
its life to understand its construction and intentions, and to change it
comfortably and confidently.

ABSTRACTION DESCANT / 19

Piecemeal growth is the process of design and implementation in
which software is embellished, modified, reduced, enlarged, and
improved through a process of repair rather than of replacement.

Habitability can be limited by various things; abstraction being one of them.
Many of my comments about abstraction also apply to encapsulation, which is a
strong variety of abstraction. But don’t panic: Abstraction and encapsulation are
good things; my point is that they should be used only in moderation.

One bad eff ect of abstraction on programs occurs when it is taken too far. This
results in code that is structured like a big pyramid, in which one level of abstrac-
tions is built tightly on another with minimal interfacial glue. Wait, that’s not
right—abstractionists would have you believe that abstraction guarantees you’ll
build geometrically precise programs, but that’s garbage. Even in single inherit-
ance object systems (in which hierarchies look like pyramids), there are other use
relationships besides inheritance. Let’s try this paragraph again.

One bad eff ect of abstraction on programs occurs when abstraction is taken
too far. This results in code that is structured like a big web, in which groups of
abstractions are tightly interwoven with others by means of interfacial glue.

In such large tangles lies one of the problems. If one abstraction is used in
many places and that abstraction’s interface is wrong, then repairing it forces
repair of all its uses. The more the abstraction is shared, the more repair will be
needed. But such repair is dangerous because it is usually made with less delibera-
tion than the original design and in the context of unexpected requirements. If
the repairs are being made by people other than the original designers and much
later than the design and original implementation, the likelihood of mistake or
ugliness will be increased.

Such webs are examples of compression: The meaning of an expression written
in the context of the web is determined by the contents of the entire web. If you
need to change another part of the web, your compressed expression might
change its meaning, what it does, or even whether it works at all. So when we
build our tight inheritance hierarchy in object-oriented fashion—weblike or pyr-
amid style—we might be falling into this trap.

The reason for this failure is the insistence on using abstractions throughout,
at all levels. If, instead, there were a level at which the code became direct rather
than indirect, this might be less likely to happen. The problem is that people are
taught to value abstraction above all else, and object-oriented languages and their
philosophy of use emphasizes reuse (compression), which is generally good.
However, sometimes the passion for abstraction is so strong that it is used inap-
propriately—it is forced in the same way as it is with larger, more complex, and
typically ad hoc abstractions.

Abstractions must be carefully and expertly designed, especially when reuse or
compression is intended. However, because abstractions are designed in a partic-

20 / PATTERNS OF SOFTWARE

ular context and for a particular purpose, it is hard to design them while antici-
pating all purposes and forgetting all purposes, which is the hallmark of the well-
designed abstractions.

This implies that abstractions are best designed by experts. Worse, average
programmers are not well-equipped to design abstractions that have universal
usage, even though the programming languages used by average programmers
and the programming language texts and courses average programmers read and
attend to learn their trade emphasize the importance of doing exactly that.
Although the designers of the programming language and the authors of texts
and course instructors can probably design abstractions well, the intended audi-
ence of the language—average programmers—cannot and are therefore left out.
That is, languages that encourage abstraction lead to less habitable software,
because its expected inhabitants—average programmers working on code years
after the original designers have disappeared—are not easily able to grasp, mod-
ify, and grow the abstraction-laden code they must work on.

Not everyone is a poet, but most anybody can write usable documentation for
small programs—we don’t expect poets to do this work. Yet we seem to expect
that the equivalent of poets will use high-level programming languages, because
only program-poets are able to use them. In light of this observation, is it any
wonder that abstraction-poor languages like C are by far the most popular and
that abstraction-rich ones like Lisp and Smalltalk are niche languages?

Recall that one of the virtues of abstraction is that “the user of the abstraction
can forget the details of the implementation of the abstraction.” Nonetheless, the
interface of a complex abstraction is likely to expose the implementation because
portions of the abstraction’s interface are likely to be dedicated to accessing par-
ticular behavior. Inexpertly designed and ad hoc abstractions frequently suff er
from this shortcoming. Once the implementation is even partially revealed, it
becomes more difficult to change the abstraction’s implementation without caus-
ing problems. If abstraction were limited to simple cases, especially those with a
fairly universal meaning—like the well-loved and ubiquitous stack, a favorite of
almost every paper on abstract types—this problem would be reduced.

Another problem with complex abstraction arises from the observation that
abstractions are about ignorance. The prime idea of encapsulation is that the
implementation is hidden, thereby preventing assumptions about the implemen-
tation. Some complex abstractions, however, contain information about the
implementation that is legitimately required, such as its performance, the algo-
rithm, coding tricks, and resource usage—keep in mind that almost all interac-
tion issues are about resource conflicts. When the implementation is truly
hidden, its user is forced to use real scientific methods to infer or discover the
needed information. Rather than preventing assumptions, hard encapsulation
tends to guarantee incorrect assumptions.

ABSTRACTION DESCANT / 21

Furthermore, when the implementation is truly hidden and there is a need to
make a change or add behavior, the user is reduced to reinventing; if the imple-
mentation is not only hidden but also protected, the user will need to copy and
maintain a parallel version. This implies that later changes to the code will be less
efficiently made because similar code must be implemented in several places. In
fact, the programmer—especially a programmer new to the project—may be
unable to find all the occurrences of the similar code.

Notice the dilemma: Complex abstractions sometimes reveal implementation,
which limits the opportunity to change their implementations, and they also are
intended to hide implementation, which forces programmers (inhabitants) into
ignorance and its resulting frustration, ineff ectiveness, and feelings of denied
responsibility. Strict abstractionists would argue that it is far better to hide the
implementation, but consider what Christopher Alexander said:

When people lose the sense of responsibility for the environment they
live in, and realize that they are merely cogs in someone else’s
machine, how can they feel any sense of identification with the com-
munity, or any sense of purpose there? (Alexander 1975)

Why put your programmers through this?

Most of these problems can be eliminated or reduced if the user is encouraged
to build small abstractions only. This is easier if the language provides other
mechanisms that help the programmer build the larger structures needed in a
program, structures that would normally be constructed from abstractions.

When we couple this advice with that of building hierarchies slowly, keeping
them shallow as long as possible, we might find that we have paved the way for
habitability, piecemeal growth, and healthy, usable compression. In fact, if we put
in place an explicit process of piecemeal growth, hierarchies will naturally grow
slowly, and they are more likely to be correct, because their use evolves over time.
The resulting compression also is natural, not forced, and it is less likely that the
compression will backfire.

This same advice is more cynically arrived at by Martin D. Carroll and John F.
Isner when discussing the design of the C++ Standard Components developed by
UNIX Systems Laboratories:

[W]e take the minimalist approach to inheritance. We use it only
when it makes our components more efficient, or when it solves cer-
tain problems in the type system.

We do not intend for our components to serve as a collection of
base classes that users extend via derivation. It is exceedingly difficult
to make a class extensible in abstracto (it is tenfold harder when one
is trying to provide classes that are as efficient as possible). Contrary
to a common misconception, it is rarely possible for a programmer to

22 / PATTERNS OF SOFTWARE

take an arbitrary class and derive a new, useful, and correct subtype
from it, unless that subtype is of a very specific kind anticipated by
the designer of the base class. Classes can only be made extensible in
certain directions, where each of these directions is consciously
chosen (and programmed in) by the designer of the class. Class
libraries which claim to be “fully extensible” are making an extrava-
gant claim which frequently does not hold up in practice. . . . There is
absolutely no reason to sacrifice efficiency for an elusive kind of
“extensibility.” (Carroll and Isner 1992, emphasis added)

Their argument comes more from efficiency than from the needs of habitabil-
ity and piecemeal growth; in fact, their whole essay is about how to achieve what
they consider the most important characteristic of a library—its efficiency. But
notice that they make a very strong claim that being able to extend a class hierar-
chy is nearly impossible, though they don’t say why precisely. One can try to puz-
zle out the reason; the best I can come up with is that many possible extensions
require access to the internal implementation of a class, and the author of the
class either does not know what parts are needed or wishes to retain the opportu-
nity to change the implementation and therefore hides the implementation. In
C++ there are other reasons, like the need for speed encourages class authors to
make virtual as little as possible.

Regardless of the reasons behind it, if we accept Carroll and Isner’s statement
that unanticipated extension is difficult, their statement supports my claim that
during the growth of an abstraction web, one must frequently go back to existing
abstractions to repair them, such repair being a sort of delayed anticipation of the
extensions.

Because abstracting a common pattern and using the abstraction is a process
of replacing something directly expressed by a shorthand, adding an abstraction
is like adding a new word to a real language: It requires learning a new vocabulary.
Real languages rarely permit us to add new words, and such words are reserved
for concepts, objects, actions, and qualifications that are basic or newly basic. We
don’t invent new words for dogs that can jump through hoops or automobiles
modified to carry 300 gallons of fuel. First, there is no need for these words except
within a small familylike circle, and even there the need soon dissipates when the
name of the dog or a phrase like “Joe’s big fueler” prove worthy and eff ective.

Second, these words would be meaningless outside the small circle that might
need them, and encountering an enclave of odd-language users would negate the
advantages of natural language. Similarly, we want to limit the use of abstraction
to either common items—common to every programmer—or items inextricably
linked to the application domain. Otherwise, unnecessarily abstracted code
would be unintelligible to programmers fresh to a project, and hence it would not
be habitable.

ABSTRACTION DESCANT / 23

Van Fraassen hints at this idea: “But in certain cases, no abstraction is possible
without losing the very thing we wish to study.” He means that the object of inter-
est is captured only by the name of the abstraction rather than by the thing itself.
For example, when we speak of redness and go no deeper, redness disappears and
all we have left is the name red.

Recall that one of the primary reasons that abstraction is overloved is that a
completed program full of the right abstractions is perfectly beautiful—it is “jus-
tified by success” as Mach said. Of course, Christopher Alexander would probably
not think such a program was beautiful—assuming he would even know how to
read a program. Note what he said about completed, planned urban develop-
ment:

[P]lanned development is also generally not coherent . . . not in a
deep-felt sense. It is supposed to be. But if we ask ourselves whether
the final product of current urban design projects actually is coherent
in the real, deep sense that we know from traditional towns, then we
must say no. The order is superficial, skin deep, only in the plan or in
some contrived orderliness of the arrangements. There is no deep
inner coherence, which can be felt in every doorway, every step, and
every street.

And . . . this modern planned development which we think of as
normal, certainly has NO power to evoke deep feeling. It can, at best,
ask for some kind of admiration for “design.” But of deep feeling there
is no word, not a tremor, not a possibility. (Alexander 1987)

Alexander’s area of study—architecture and urban development—has the
advantage of having had a long history and, hence, examples of the sort of habit-
able, deeply felt homes and towns and cities with which he can contrast the prod-
ucts of the modern design approach. In software there are no large examples that
I can point to with which we are all familiar. And so we can ask whether Alex-
ander’s words—which sound so nice when apply them to the field of software—
pertain in any real sense to computer science. But that is a question for another
essay.

Remember, piecemeal growth is the norm, and programs grow, change, and
are repaired. Therefore, the perfectly beautiful program is possible only for very
small programs, like the ones in books on programming or in programming
courses.

Now let’s return to my definition of abstraction. One thing that strikes me
about this definition, now that I have used it for years and years, is the degree to
which the fact is ignored or forgotten that there are two conditions for abstrac-
tion. There is not only a common pattern but also systematic variations. Sub–
routines and functions are perfect examples: The common pattern is the code

24 / PATTERNS OF SOFTWARE

that ends up in the subroutine, and the systematic variations are the arguments
that are passed—the mechanism for specifying the variation is the parameter.

What about common patterns without systematic variations? I will turn to this
topic in the second part of this essay.

To some extent, object-oriented programming is about piecemeal growth. But
in some languages, it is achieved by catching the excess-abstraction disease. This
essay is not intended to convince you that abstraction is bad (or that I’m nuts),
but to show that maybe some of the other concerns of software development—
creating habitable software that can be eff ectively maintained, recognizing that
the reality of software development is piecemeal growth and to plan accordingly,
and to understand that the power of object-oriented programming is compres-
sion, which carries a terrific requirement for careful use of inheritance—relate to
how we use abstraction and how much we use it.

� � �

In order for the building to be alive, its construction details must be
unique and fitted to their individual circumstances as carefully as the
larger parts. . . . The details of a building cannot be made alive when
they are made from modular parts. (Alexander 1979)

Let’s look again at the definition of abstraction I’ve been using:

Abstraction in programming is the process of identifying common
patterns that have systematic variations; an abstraction represents
the common pattern and provides a means for specifying which vari-
ation to use.

An abstraction facilitates separation of concerns: The implemen-
tor of an abstraction can ignore the exact uses or instances of the
abstraction, and the user of the abstraction can forget the details of
the implementation of the abstraction, so long as the implementation
fulfills its intention or specification. (Balzer et al. 1989)

Unfortunately, such patterns are usually turned into abstractions, with the
unsystematic variations being lumped in with the systematic ones, the result
being an ad hoc interface. Using such ad hoc abstractions, client code—code
using an abstraction—can end up being composed of glue code surrounding
“invocations” of the ad hoc abstractions. The glue code, however, may only to
contort the natural structure of the client code. Notice how this eff ect compounds
another problem with abstractions: If an abstraction is composed of what
amounts to a conglomeration of somewhat related operations, programmers are
more likely to want to modify or add to the abstraction—it’s ugly enough to
begin with, so what’s the harm?

ABSTRACTION DESCANT / 25

Examples of this sort of abuse of abstraction abound in Common Lisp—

though I like the language and don’t intend to criticize it. A typical example is

mismatch, which searches two sequences (a sequence is a Common Lisp data

type) for the first index where the two sequences diff er according to a test predi-

cate. Common Lisp supports keyword arguments, which provide a means to sup-

ply a variable number of optional arguments by naming them. This mechanism

helps clarify the meaning of (the possibly many) arguments to a complex func-

tion.The function mismatch takes a variety of optional arguments that specify the

direction to search, a function to test whether two items are the same, and

whether the predicate should be negated (even though there are mechanisms to

negate predicates in the language and the negated predicate can be easily passed

to mismatch). Clearly, Common Lisp, though a well-designed language, contains

a number of common patterns without systematic variations.

Christopher Alexander’s comment on modular parts, which began this essay,

bears on this point. Contrast it with what Greg Nelson said about Modula-3:

The better we understand our programs, the bigger the building
blocks we use to structure them. After the instruction came the state-
ment, after the statement came the procedure, after the procedure
came the interface. The next step seems to be the abstract type.
(Nelson 1991)

What Alexander seems to be saying is that if we try to use modular parts (solid

building blocks not easily molded to the current circumstances), then the overall

structure of the thing built with them may become overly constrained by their

shape. In programming, if a set of large abstractions does nearly the right thing, it

is tempting to use them and to bend the structure of the surrounding program to

fit them. This can lead to uninhabitable programs.

Worse: You can fight this temptation and choose not to use them. This choice

also can lead to uninhabitable programs because you will be using parts similar

but subtly diff erent from possibly familiar ones. The only way to avoid this is to

use small blocks rather than large ones, or to use blocks well-designed and tested

by experts.

Large abstractions are large common patterns, and what is missing in pro-

gramming languages is a treatment of common patterns. Such a treatment would

need to support separating their use from their definition. Now, what would such

a separation mean in ordinary abstractions? The key benefit is that there would be

just one place the programmer has to look in order to repair or study it. There is

no reason a language or—far better—a programming environment couldn’t show

the underlying common parts of a pattern. Later I’ll cite an example of what this

could be like.

26 / PATTERNS OF SOFTWARE

What is an example of such a pattern? The idea of accumulating a result is one:

(let ((result ...)

 ...)

 ...

 (<loop> ... (setq result ...) ...)

 ...result...)

This isn’t such an interesting example because the pattern is so familiar, but it
is easy to see it as a pattern people learn and which cannot be easily captured by a
traditional abstraction. There isn’t too much one can do to systematically modify
this pattern—it has so few common parts and so many potential variations—but
there is a lot that programmers gain from knowing this pattern and later coming
upon a piece of code that contained it: It would help them know why the obscure-
looking variable is popping up from place to place; it would help them see in their
mind’s eye the whole pattern with the intervening portions elided.

One way to lay a foundation of common patterns is the same way we do with
natural language: Teach people the most common patterns. We never think to
teach people how to create words—poets do this frequently, and sometimes
ordinary people become word-inventors—yet we teach budding programmers
to create their own vocabulary but we don’t provide a catalog of common pat-
terns of usage.

I think this means that we need to spend more time teaching programming,
and the increased time should be devoted to teaching patterns and reading “great”
programs. How much time do we spend reading in our ordinary education? And
from our reading we gain a foundation for writing. In turn, this foundation is
sometimes expanded by careful instruction and tutoring in writing. Certainly
many people who write for a living go through this process. But in programming
we just learn the language and solve a bunch of short puzzles. Sort of like writing
50 limericks and then off to write books.

Let’s look at a simple example of how abstractions and patterns interact. Con-
sider the following code fragment:

(let ((result (mapcar f list))) ...)

This takes a function f, applies it to each element of the list list, and binds the
list of the results of those applications to the variable result. Now, an ordinary
programmer knows that mapcar traverses the list, so there should be some tricky
way to make the mapcar do double duty, computing the length of the list as well.
But try as you might, you won’t find an easy way to modify f so that the length
can be transparently obtained and abstraction boundaries heartily enforced—
remember I said an easy way.

ABSTRACTION DESCANT / 27

There will always be some object somewhere that is accumulating the length;
we can bury the side-eff ecting code in a modified f, but there still is the access of
that accumulator, whether it be a variable or some object. If you really wanted to
have abstraction reign, you’d try to write something like this:

Here the shaded area indicates a place where a “sufficiently smart” compiler
could try to fold the two computations into one. Actually, there are lots of ways to
imagine an environment helping promote such transparent patterns. One is that
this could be the environment’s surface manifestation of an optimized section of
code. In this case, the programmer might have made the optimization by hand,
and the environment would be simply showing the unoptimized code; this envi-
ronmental feature might also aid with piecemeal growth by maintaining a history
of the software evolution.

This formulation also correctly respects the abstraction of both operations—
the mapcar and the length computation—but it incorrectly overemphasizes
abstraction because the unabstracted but common-pattern code is just fine:

(let ((length 0))
 (let ((result
 (mapcar
 #’(lambda (x)
 (incf length)
 (f x))
 list)))
 ...))

This code is obvious to even a novice (modern) Lisp programmer, and it requires
a lot less mechanics than does the environmental approach just before it. Further,
note that the length computation winds like a vine from the outside of the map-
car abstraction to its inside.

Let’s look at another problem with abstractions: Data and control abstractions
are generally best when they are codesigned and this is rarely done anymore.
Consider, for example, the Fortran abstractions of arrays and iteration. Arrays
are abstractions designed to represent vectors and matrices. Iteration is a control
abstraction useful for traversing vectors and arrays. Think, for example, of how
easy it is to implement summation over the elements of a vector. This is because
arrays and DO loops were codesigned.

The codesign of mathematical data and control abstractions is not an accident.
One could hardly ignore the need to refer to individual elements in a matrix or a
sequence while performing nested sums and products in a numeric computation.

(let ((result
 (length list)

(mapcar f list))
)) ...)(len

28 / PATTERNS OF SOFTWARE

Partly the codesign was made by mathematicians before Fortran was created,
and partly because when Fortran was developed there were no alternatives other
than conditional and GO statements. The success of Fortran is due at least some-
what to the close match between the data abstractions (scalars, vectors, and
arrays) and control abstractions that manipulate them (DO loops).

Even though there was a recognized need to be able to define data abstractions
after Fortran was developed, there was never a recognized need to be able to
define control abstractions. Some languages, like Lisp, adopted a powerful macro
facility which enables programmers to define their own control abstractions. Of
course, macros also enable programmers to define their own data structures by
providing a means to define a protocol that is syntactically the same as ordinary
function invocation.

But an interesting thing happened to Lisp in the early 1980s: the use of macros
to define control structures became forbidden style. Not only did some organiza-
tions outlaw such use of macros, but the cognoscenti began sneering at program-
mers who used them that way. Procedural abstractions are acceptable, but not
control abstractions. The only acceptable control abstractions in Lisp today are
function invocation, do loops, while loops, go statements (sort of), non-local
exits, and a few mapping operations (such as mapcar in Lisp).

The mismatch example shows how one sort of abstraction (a function) can be
used to implement control abstractions. Some of the arguments specify the func-
tion’s control behavior (which direction to search, how to extract the data of
interest, how to test whether the item was found, and whether to negate the value
of that test function). The common pattern—generalized search, generalized
extraction, generalized test, and gratuitous negation—has been completely elimi-
nated, and all hope of understanding a code fragment invoking this abstraction
rests with being able to understand the name of the function and the meanings of
its arguments. Common Lisp, at least, provides keyword arguments to name the
role of the arguments. Does the following code fragment:

seem easier to understand than this pattern of use:

(mismatch sequence list :from-end t
:start1 20 :start2 40
:end1 120 :end2 140 :test #’baz)

(let ((subseq1 (reverse (subseq sequence 20 120)))
(subseq2 (reverse (subseq list 40 140))))

(flet ((the-same (x y) (baz x y)))
(loop for index upfrom 0

as item1 in subseq1
as item2 in subseq2
finally (return t) do

(unless (the-same item1 item2)
(return index)))))

ABSTRACTION DESCANT / 29

This latter code fragment is an example of a common pattern. If you have been

taught to see such patterns, they are as easily understood as the shorthand mis-

match call. Furthermore, if you have not been trained to understand either the

mismatch or the common pattern, you can still understand the common pattern

just by reading it. The mismatch expression has two advantages over the common

pattern one:

• System implementers can more easily guarantee that the implementation of

mismatch is maximally efficient, coding it in assembler if need be (I’m sure

you’ll rest better tonight knowing that).

• It is harder to type the longhand common pattern than the mismatch expres-

sion, and it is just plain longer.

The first problem goes away when computers are fast enough (more on this

later). The second goes away with a well-designed programming environment or

doesn’t matter at all when you consider the habitability gains from using an easily

understood program. In fact, there is no reason that the shorthand mismatch

expression could not be simply an abbreviation for the longhand common pat-

tern. The programmer could decide which to see and could change either one.

Then if the common pattern version strays too far, it will no longer be abbreviated

(because it can’t be).

Let’s consider the scenario in which the interface to a data abstraction is being

extended—we’ve added to the interface and we need to modify our program to

invoke the new parts. For example, additional state must be initialized and main-

tained. The problem of adding invocations of the new part of the protocol is exac-

erbated by the fact that only mathematical, Fortran-like control structures are

available. Over the years programmers have gotten into the habit of optimizing

the use of these control structures for either efficiency or style. Typically the most

compact control structure for the specific job at hand is often preferred to a more

general formulation. Modifying such optimized control structures sometimes

requires large a structural modification of a program when only small modifica-

tions seem necessary. For instance, the initialization information might not be

available at the point we need it and must be reconstructed or saved somewhere,

or only part of the initialization information might have been computed because,

earlier, not all of it was needed.

This problem with abstractions stems from mixing a fixed set of (inappro-

priate) control abstractions with custom-designed data abstractions. If natural

control abstractions were matched, they must be implemented nonabstractly

using existing low-level primitives—that is, through other control structures.

Even though there is a pattern of control, there is no way to abbreviate it except

through procedural or functional abstractions.

30 / PATTERNS OF SOFTWARE

Such lopsided use of data abstraction forces programs to be written at varying
levels of abstraction. The result is that the programmer is reduced to switching
mentally between these levels. Right next to a protocol invocation that represents
the opening of a floodgate will be the assignment of 1 to a flag that tells a later
part of the program that a certain initialization already took place. Furthermore
and worse, the flag might be part of an otherwise completely application domain-
level data abstraction.

The use of procedural or functional abstractions (combined with the fact that
argument evaluation rules might thwart a need to pass expressions and not val-
ues) only pushes the problem down one level: Within the procedure or function
the implementation of the control abstraction is fully exposed, even though
objects being manipulated are high-level data abstractions.

Regardless of what you make of this view of data versus control abstraction, it
is certainly true that because almost every programming language does not allow
any sort of meaningful user-defined control abstractions, there is always a mis-
match in abstraction levels between control and data. If there is a good reason for
allowing data abstractions, why isn’t that a good reason for allowing control
abstractions; and if there is a good reason to disallow control abstractions, why
isn’t that a good reason to disallow data abstractions? Nevertheless, it is accepted
practice to use existing control abstractions to implement others using common
patterns. My argument is that perhaps we should be more willing to use common
patterns for other things as well.

The real reason that common patterns are not used rather than tight abstrac-
tions is efficiency. It is more efficient to write abstracted, compressed code than
uncompressed common patterns, and it is more efficient to execute abstracted
code in some cases. For example, if we were to write the two lines that do mapcar
and length, they would run about twice as slow as some complex compressed
version. This wouldn’t matter if computers were big enough and fast enough for
the programs we need, but right now they aren’t. So we continue to pay with the
sweat of people so that computers can take it easy and users don’t have to be
inconvenienced. Perhaps someday the economics of this situation will change.
Maybe not.

Common patterns are similar in nature though not detail to the patterns that
Christopher Alexander uses in his so-called pattern languages. A pattern language
is a language for generating buildings and towns with organic order. Patterns gen-
erally specify the components of a portion of a building or a place and how those
components are related to other patterns. Here is an example of a pattern that
every planner of developers’ offices should know:

Locate each room so that it has outdoor space on at least two sides,
and then place windows in these outdoor walls so that natural light
falls into every room from more than one direction. (Alexander 1977a)

ABSTRACTION DESCANT / 31

The bulk of Alexander’s written work over the last 15 years—and from which I
have been freely quoting—describes the theory behind pattern languages and the
patterns for building and urban development that he and his students and col-
leagues have devised. These patterns and the social process for applying them are
designed to produce organic order through piecemeal growth. Clearly there is a
connection between patterns as Alexander defines them and the common pat-
terns that form half the definition of abstraction. But there is no room in this
essay to explore it; perhaps in another.

Here are the lessons that I think the last two essays plus this one teach:

• Object-oriented languages gain their power from compression, which can
lead to compact, efficiently expressed programs. Compression, though, can
present problems if it is prematurely used.

• Software development is always through piecemeal growth and rarely through
thorough design. Such planned development can lead both to technical prob-
lems because the future of a piece of software cannot be known and also to
social problems because completely planned development alienates those
developers who are not also the planners.

• Habitability is one of the most important characteristics of software. It enables
developers to live comfortably in and repair or modify code and design.

• When taken to extremes, abstraction can diminish habitability and can result
in premature compression. Beware of overabstracting or of abstracting when a
common pattern will do.

• There is much to learn about software development, and we are just starting
to do that.

33

�
The Quality Without a Name

In 1992 I started reading the more recent work of Christopher Alexander, the Ber-
keley architect who studies design. The work I’m referring to is captured in the
books, The Timeless Way of Building (1979), A Pattern Language (1977b), The Ore-
gon Experiment (1975), and A New Theory of Urban Design (1987). Computer sci-
entists over the years have picked up on his writing, and now a small group of
them are into “writing patterns.” Patterns certainly have an appeal to people who
wish to design and construct systems because they are a means to capture com-
mon sense and are a way to capture abstractions that are not easily captured oth-
erwise.

My own trek into the space of Alexander’s thought began slowly—I read the
work, but I tried not to jump to conclusions about its relation to software design.
I wanted to figure out what the corresponding points were between architecture
and software. The first place where I think I diff ered with others’ interpretation of
Alexander’s work was in defining the users or inhabitants of a piece of software as
its coders and maintainers. At least one computer scientist identified the “user” of
a piece of software as the end user. This appears to make sense at first, but when
you read Alexander, it is clear that a “user” is an inhabitant—someone who lives
in the thing constructed. The thing constructed is under constant repair by its
inhabitants, and end users of software do not constantly repair the software,
though some might want to.

In earlier essays I’ve hinted that my trek might also head in the direction of
patterns, which are not quite abstractions, modules, or classes. Alexander himself
proposes pattern languages as a way to approach design at all levels, from cities
and towns to houses and rooms and even to construction techniques.

Now I am at the point of trying to figure out what corresponds to Alex-
ander’s patterns. To do this, though, requires figuring out as precisely as I can
what the quality without a name is in the realm of software. This quality is at

34 / PATTERNS OF SOFTWARE

the heart of everything Alexander has done since the mid-1960s, and it figures
heavily in his conception of pattern languages. Pattern languages are designed
to generate towns, communities, neighborhoods, buildings, homes, and gar-
dens with this quality. Alexander’s search, culminating in pattern languages,
was to find an objective (rather than a subjective) meaning for beauty, for the
aliveness that certain buildings, places, and human activities have. The objec-
tive meaning is the quality without a name, and I believe we cannot come to
grips with Alexander in the software community unless we come to grips with
this concept.

In an interview with Stephen Grabow, Alexander stated:

I was no longer willing to start looking at any pattern unless it pre-
sented itself to me as having the capacity to connect up with some
part of this quality [the quality without a name]. Unless a particular
pattern actually was capable of generating the kind of life and spirit
that we are now discussing, and that [sic] it had this quality itself, my
tendency was to dismiss it, even though we explored many, many
patterns. (Grabow 1983)

Computer scientists who try to write patterns without understanding this
quality are quite likely not following Alexander’s program, and perhaps they are
not helping themselves and others as much as they believe. Or perhaps they are
doing harm. So what is this quality without a name?

The quality is an objective quality that things like buildings and places can
possess that makes them good places or beautiful places. Buildings and towns
with this quality are habitable and alive. The key point to this—and the point that
really sets Alexander apart from his contemporaries and stirs philosophical
debate—is that the quality is objective. First I’ll try to explain the quality, then I’ll
explain what is so radical about the concept of such a quality. Here is what Alex-
ander says:

The first place I think of when I try to tell someone about this quality
is a corner of an English country garden where a peach tree grows
against a wall.

The wall runs east to west; the peach tree grows flat against the
southern side. The sun shines on the tree and, as it warms the bricks
behind the tree, the warm bricks themselves warm the peaches on the
tree. It has a slightly dozy quality. The tree, carefully tied to grow flat
against the wall; warming the bricks; the peaches growing in the sun;
the wild grass growing around the roots of the tree, in the angle where
the earth and roots and wall all meet.

This quality is the most fundamental quality there is in anything.
(Alexander 1979)

THE QUALITY WITHOUT A NAME / 35

At first the quality sounds like one reserved for art or architecture. But Alex-
ander asserts that the patterns themselves in his pattern languages must have the
quality, and it’s fairly clear from what he says about the quality that almost any-
thing can have it or not.

Let’s try to figure it out. Alexander says:

It is a subtle kind of freedom from inner contradictions.
(Alexander 1979)

This statement reflects the origins of his inquiry into the quality. It started in
1964 when he was doing a study for the Bay Area Rapid Transit (BART) system
based on the work reported in Notes on the Synthesis of Form (Alexander 1964),
which in turn was based on his Ph.D. dissertation. One of the key ideas in this
book was that in a good design there must be an underlying correspondence
between the structure of the problem and the structure of the solution— good
design proceeds by writing down the requirements, analyzing their interactions
on the basis of potential misfits, producing a hierarchical decomposition of the
parts, and piecing together a structure whose

structural hierarchy is the exact counterpart of the functional hierar-
chy established during the analysis of the program. (Alexander 1964)

Alexander was studying the system of forces surrounding a ticket booth, and
he and his group had written down 390 requirements for what ought to be hap-
pening near it. Some of them pertained to such things as being there to get tickets,
being able to get change, being able to move past people waiting in line to get
tickets, and not having to wait too long for tickets. What he noticed, though, was
that certain parts of the system were not subject to these requirements and that
the system itself could become bogged down because these other forces—forces
not subject to control by requirements—acted to come to their own balance
within the system. For example, if one person stopped and another also stopped
to talk with the first, congestion could build up that would defeat the mechanisms
designed to keep traffic flow smooth. Of course there was a requirement that
there not be congestion, but there was nothing the designers could do to prevent
this by means of a designed mechanism.

Alexander said this:

So it became clear that the free functioning of the system did not
purely depend on meeting a set of requirements. It had to do, rather,
with the system coming to terms with itself and being in balance with
the forces that were generated internal to the system, not in accor-
dance with some arbitrary set of requirements we stated. I was very
puzzled by this because the general prevailing idea at the time [in

36 / PATTERNS OF SOFTWARE

1964] was that essentially everything was based on goals. My whole
analysis of requirements was certainly quite congruent with the oper-
ations research point of view that goals had to be stated and so on.
What bothered me was that the correct analysis of the ticket booth
could not be based purely on one’s goals, that there were realities
emerging from the center of the system itself and that whether you
succeeded or not had to do with whether you created a configuration
that was stable with respect to these realities. (Grabow 1983)

A system has this quality when it is at peace with itself, when it has no inter-
nal contradictions, when it is not divided against itself, when it is true to its own
inner forces. And these forces are separate from the requirements of the system
as a whole. In software we hear about gathering requirements, through talking
to users or customers or by examining the problem space. In the world of com-
puter-aided software engineering (CASE) we hear about traceability, which
means that every procedure or object can be traced back to the requirement that
spawned it. But if Alexander is right, then many of the key characteristics of a
system come from internal forces and not external requirements. So to what will
such parts of system trace? Perhaps to the requirement that a system have the
quality without a name.

Alexander proposes some words to describe the quality without a name, but
even though he feels they point the reader in a direction that helps comprehen-
sion, these words ultimately confuse. The words are alive, whole, comfortable,
free, exact, egoless, and eternal. I’ll go through all of them to try to explain the
quality without a name.

The word alive captures some of the meaning when you think about a fire that
is alive. Such a fire is not just a pile of burning logs, but a structure of logs in
which there are sufficient and well-placed air chimneys within that structure.
When someone has built such a fire, you don’t see them push the logs about with
a poker but you do see them lift a particular log and move it an inch or maybe a
half inch, so that the air flows more smoothly or the flame curls around the log in
a specific way to catch a higher-up log. Such a fire burns down to a small quantity
of ash. This fire has the quality without a name.

The problem with the word alive is that it is a metaphor—it is hard to know
whether something literally not alive, like a fire, is, in fact, alive, and when we try
to think of what makes a fire alive, we’re not really sure.

Whole captures part of the meaning, because for Alexander a thing that is
whole is free from internal contradictions or inner forces that can tear it apart.
The analogy he uses is a ring of trees around the edge of a windblown lake: The
trees bend in a strong wind, and the roots of the trees keep the bank from erod-
ing, and the water in the lake helps nourish the trees. Every part of the system is in
harmony with every other part. On the other hand, a steep bank with no trees is

THE QUALITY WITHOUT A NAME / 37

easily eroded—the system is not whole, and the system can destroy itself: the
grasses and trees are destroyed by the erosion, the bank is torn down, and the lake
is filled with mud and disappears. The first system of trees, bank, and lake has the
quality without a name.

The problem with this word is that whole implies, to some, being enclosed or
separate. A lung is whole but it is not whole while still completely contained
within a person—a lung requires air to breathe, which requires plants to absorb
carbon dioxide and to produce oxygen. The system is much larger than the one
that contains the lungs.

The word comfortable involves more that meets the eye. Alexander explains it
this way:

Imagine yourself on a winter afternoon with a pot of tea, a book, a
reading light, and two or three huge pillows to lean back against.
Now, make yourself comfortable. Not in some way you can show to
other people and say how much you like it. I mean so that you really
like it for yourself.

You put the tea where you can reach it; but in a place where you
can’t possibly knock it over. You pull the light down to shine on the
book, but not too brightly, and so that you can’t see the naked bulb.
You put the cushions behind you and place them, carefully, one by
one, just where you want them, to support your back, your neck, your
arm: so that you are supported just comfortably, just as you want to
sip your tea, and read, and dream.

When you take the trouble to do all that, and you do it carefully,
with much attention, then it may begin to have the quality with no
name. (Alexander 1979)

The problem with comfortable is that it has too many other meanings. For
example, a family with too much money and a house that is too warm also is
comfortable.

The word free helps define the quality by implying that things that are not
completely perfect or overplanned or precise can have the quality too. It also frees
us from the confines and limitations of whole and comfortable.

Free, of course, is not correct because it can imply reckless abandon or not hav-
ing roots in its own nature.

The word exact counterbalances comfortable and free, which can give the
impression of fuzziness or overlooseness. The quality is loose and fluid, but it
involves precise, exact forces acting in balance. For example, if you try to build a
small table on which to put birdseed in the winter for blackbirds, you must know
the exact forces that determine the blackbirds’ behavior so that they will be able to
use the table as you planned. The table cannot be too low because blackbirds
don’t like to swoop down near the ground, and it cannot be too high because the

38 / PATTERNS OF SOFTWARE

wind might blow them off course, it cannot be too near to things that could
frighten the birds like clotheslines, and it cannot be too exposed to predators.
Almost every size for the table and every place to put it you can think of won’t
work. When it does work, the birdseed table has the quality with no name.

Exact fails because it means the wrong sort of thing to many people. Alexander
says:

Usually when we say something is exact, we mean that it fits some
abstract image exactly. If I cut a square of cardboard and make it per-
fectly exact, it means that I have made the cardboard perfectly
square: its sides are exactly equal: and its angles are exactly ninety
degrees. I have matched the image perfectly.

The meaning of the work “exact” which I use here is almost the
opposite. A thing which has the quality without a name never fits any
image exactly. What is exact is its adaptation to the forces which are
in it. (Alexander 1979)

Egoless conveys an important and surprising aspect of the quality. I’ll let Alex-
ander say it:

When a place is lifeless or unreal, there is almost always a master-
mind behind it. It is so filled with the will of the maker that there is
no room for its own nature.

Think, by contrast, of the decoration on an old bench—small
hearts carved in it; simple holes cut out while it was being put
together—these can be egoless.

They are not carved according to some plan. They are carefree,
carved into it wherever there seems to be a gap. (Alexander 1979)

The word egoless is wrong because it is possible to build something with the qual-
ity without a name while retaining some of the personality of its builder.

Finally is the word eternal. By this word Alexander means that something with
the quality is so strong, so balanced, so clearly self-maintaining that it reaches
into the realm of eternal truth, even if it lasts for only an instant.

But eternal hints at the mysterious, and there is nothing mysterious about the
quality. Alexander concludes his discussion of this quality with the following:

The quality which has no name includes these simpler sweeter quali-
ties. But it is so ordinary as well that it somehow reminds us of the
passing of our life.

It is a slightly bitter quality. (Alexander 1979)

This slightly bitter quality is at the center of Alexander’s pattern languages. I
believe that if we are to embrace pattern languages, we must also embrace this

THE QUALITY WITHOUT A NAME / 39

quality. But what is this quality in software? Certainly I am bitter when I think
about some software I know of, but this isn’t what Alexander is after. I’ll return to
this after explaining why this quality is regarded as revolutionary.

What is revolutionary about Alexander is that he is resuming the quest for an
understanding of objective quality that science and philosophy abandoned in the
modern era. In the seventeenth and eighteenth centuries, a tension developed in
which mind and matter were separated by science and philosophy. From this
came the separation of fact and value. After the separation, a fact had no value
associated with it, a fact could not be good or bad, it just was. Science, then, tried
to find theories that explained things as they were and no longer sought what was
good or beautiful about things. That is, we no longer sought the objective charac-
teristics of beauty, which is where Alexander started his quest.

Today it is hard for us to understand that fact and value once were tied to-
gether, and it is hard for us as software designers to think of what there could be
about a software system that would exhibit Alexander’s quality without a name.
And, even if we could, it would be difficult to not dismiss it as something only in
the eye of the beholder.

The study of beauty stopped because beauty became a mere contingency—
whether something was beautiful didn’t depend much or at all on the thing, only
on the thing as perceived by an unnecessary observer. A thing was beautiful to
someone: It was not simply beautiful.

Alexander stepped forward and tried to reverse the separation of fact from
value. His program was not only to find patterns that explain the existence of the
quality without a name but also to find patterns that generate objects with that
quality. Furthermore, the patterns themselves must demonstrate the same quality.

Here is how Alexander puts it:

Myself, as some of you know, originally a mathematician, I spent sev-
eral years, in the early sixties, trying to define a view of design, allied
with science, in which values were also let in by the back door. I too
played with operations research, linear programming, all the fasci-
nating toys, which mathematics and science have to off er us, and
tried to see how these things can give us a new view of design, what to
design, and how to design.

Finally, however, I recognized that this view is essentially not pro-
ductive, and that for mathematical and scientific reasons, if you like,
it was essential to find a theory in which value and fact are one, in
which we recognize that here is a central value, approachable through
feeling, and approachable by loss of self, which is deeply connected to
facts, and forms a single indivisible world picture, within which pro-
ductive results can be obtained. (Alexander 1977a, emphasis in origi-

nal)

40 / PATTERNS OF SOFTWARE

For many, Alexander is merely pining for the days when quaint villages and
eccentric buildings were the norm. But face it, the buildings he hates, you hate
too; and buildings he loves, you love. If this is true, then maybe there is an objec-
tive value that we all can recognize.

Alexander is lucky that architecture has a very long history and that the arti-
facts of architecture from a lot of that history are visible today. This means that he
can examine things built before science and philosophy relegated beauty to con-
tingency. We in software are not so lucky—all of our artifacts were conceived and
constructed firmly in the system of fact separated from value. But there are pro-
grams we can look at and about which we say, “no way I’m maintaining that
kluge.” And there are other programs about which we can say, “Wow, who wrote
this!” So the quality without a name for software must exist.

One of the aspects of the quality with no name that Alexander seems clear on
is that buildings with the quality are not made of large modular units. Some of his
examples of buildings or things with the quality are built with bricks and other
such small modular units, but not large ones. If you were thinking that Alexander
is just talking about plain old highly abstract and modular code, perhaps you
should think again. His pattern languages provide a well-thought-out abstract
language for talking about buildings, and he encourages new pattern languages,
but only when they embody the quality with no name—he does not endorse willy
nilly pattern languages. Here is what he says:

Suppose, for example, that an architect makes the statement that
buildings have to be made of modular units. This statement is
already useless to me because I know that quite a few things are not
made of modular units, namely people, trees, and stars, and so there-
fore the statement is completely uninteresting—aside from the tre-
mendous inadequacies revealed by a critical analysis on its own
terms. But even before you get to those inadequacies, my hackles are
already up because this statement cannot possibly apply to everything
there is in the universe and therefore we are in the wrong ball-
game. . . . In other words, I actually do not accept buildings as a spe-
cial class of things unto themselves, although of course I take them
very seriously as a special species of forms. But beyond that is my
desire to see them belong with people, trees, and stars as part of the
universe. (Grabow 1983)

If we look carefully at the buildings, towns, and cities that Alexander admires,
we will see that they are European or perhaps even Third World. This suggests a
couple of lines of inquiry into what the quality might be.

European building has an interesting constraint: There isn’t much space.
People and their buildings need to take up as little space as possible, and build-
ings, town layout, and common areas are cleverly put together to conserve what

THE QUALITY WITHOUT A NAME / 41

is precious. The same is true in many older cultures. Working under space con-
straints has a few interesting eff ects.

One eff ect is that things are on a smaller scale, where perfection is not as easily
achieved and where regularity from irregular small parts is possible. Errors are
seen as errors only in a context in which those errors are relatively large. When
they are small, they form part of the attractiveness of approximate placement.
One way to think about this is that nature has a regularity that is not captured
well by precise prefractal geometry—such geometry is too precise, too exact to
capture nature well. With fractals, though, we can simulate natural surroundings,
and the approximate nature of small irregularities is mimicked by irregular place-
ment and small errors.

Another eff ect is that of the creativity spawned by constraint, which is most
easily explained by analogy to poetry. There are many reasons why poetry uses
forms—specific meter, rhyme, and stanzaic structure. One reason is that such
devices aid memory, and poetry was originally an oral art form. Another impor-
tant reason is that by placing constraints on the form of a written statement, it
becomes less easy to use a phrase or word that easily comes to mind, because it
probably won’t fit. And if it comes to mind easily, it is most likely a hackneyed
phrase or at least one that the poet uses or hears frequently enough that it has lost
its edge. By forcing the poet to write in a form, the easy, automatic phrase is elim-
inated, and the poet is forced to find other ways of saying what is meant. And
when that isn’t possible, the poet must look for other things to say. In both cases,
the constraints force the poet to look for something new to say or new way to say
it. Therefore, form in poetry is a device that helps create a climate or context for
creativity and newness.

The same is true for construction: When there is no room to do the obvious or
when a building must fit in a specific place, the architect must look for new solu-
tions. Because constraint by form limits options, ways must be found to use a sin-
gle space for multiple purposes.

Europe has a long history, and there are two more eff ects of that. One is that
when people are put into a small space, building with flammable materials is dan-
gerous. Therefore one must build with more durable and difficult materials. This
implies that the standard of perfection must drop, and the results are buildings
that look more like nature—more fractal-like.

The last eff ect is that today we see those buildings and towns that have sur-
vived because they are pleasant—there is a natural selection. It would be odd to
see towns and buildings in Europe that are old and just plain ugly; they would not
have survived.

Some of these things might be reasons to question whether the quality without
a name really exists separate from the quality of looking like nature or the quality
of being highly compressed.

42 / PATTERNS OF SOFTWARE

Software has a situation corresponding to compression: bummed code. Bum-
med code is code that must perform a particular task in a highly constrained foot-
print because there just isn’t any space to do the task in a straightforward manner.
This often requires very clever encoding and multiple uses of single resources.
Bummed code possesses a certain aesthetic quality, not unlike the compressed
quality without a name. The indirectness of such code is pleasing to admire,
though not, perhaps, to modify.

� � �

I still can’t tell you what the quality is, but I can tell you some things about soft-
ware that possesses it:

• It was not written to an unrealistic deadline.

• Its modules and abstractions are not too big—if they were too big, their size
and inflexibility would have created forces that would overgovern the overall
structure of the software; every module, function, class, and abstraction is
small and named so that I know what it is without looking at its implementa-
tion.

• Any bad parts were repaired during maintenance or are being repaired now.

• If it is small, it was written by an extraordinary person, someone I would like
as a friend; if it is large, it was not designed by one person, but over time in a
slow, careful, incremental way.

• If I look at any small part of it, I can see what is going on—I don’t need to refer
to other parts to understand what something is doing. This tells me that the
abstractions make sense for themselves—they are whole.

• If I look at any large part in overview, I can see what is going on—I don’t need
to know all the details to get it.

• It is like a fractal, in which every level of detail is as locally coherent and as well
thought out as any other level.

• Every part of the code is transparently clear—there are no sections that are
obscure in order to gain efficiency.

• Everything about it seems familiar.

• I can imagine changing it, adding some functionality.

• I am not afraid of it, I will remember it.

I wish we had a common body of programs with the quality, because then
we could talk about them and understand. As it is, programs are secret and pro-
tected, so we rarely see any but those we write ourselves. Imagine a world in

THE QUALITY WITHOUT A NAME / 43

which houses were hidden from view. How would Alexander have found the
quality with no name?

Think about the quality without a name when you look at your software. Do
you think your software possesses it? What would you do to make your software
have it?

45

�
Pattern Languages

Christopher Alexander’s work is based on the premise that the quality without a
name is an objective characteristic of things and places. As an architect, Alexander
wants to know where this quality comes from and, more important, how to create
it, how to generate it. In the previous essay, “The Quality Without a Name,” we
learned of the divorce centuries ago of beauty from reality. That science could
survive the divorce is understandable because science seeks to describe reality.
Science can live and succeed a long time before it needs to concern itself with
describing what makes something beautiful— when something is contingent, as
beauty seems to be in modern science, there is little need to describe it. Art, on the
other hand, cannot ignore beauty or the quality without a name because artists
create things—paintings, sculptures, buildings—that are beautiful, that have the
quality without a name. There are few fields that blend art and science: Architec-
ture is one, and computer science is another. Architects must design buildings
that can be built and architects have a “theory” about what they do—at least
architects like Alexander do. In computer science we can describe theories of soft-
ware, and we create software.

In a field that combines art and science, its practitioners are often divided into
camps—one that cares about the raw science and traditionally objective charac-
teristics of the field and another that cares about the beauty and elegance of its
creations. In software we care a lot about good code, and we rave about the good
coders that we know. In doing this we fall into a trap that Alexander wants us to
avoid: separating design from construction.

Before we plunge into patterns, I want to set the stage for the accepted view of
how architecture is done, at least in the pre-Alexander world. Architects are hired
to solve the problem of how to construct a building or buildings that meet certain
constraints as specified by the future inhabitants or people in a position to specify
what those inhabitants will need. The architect generally interviews those future

46 / PATTERNS OF SOFTWARE

inhabitants, studies the site, refers to the local building code, observes neighbor-
ing buildings, considers the building materials and construction protocols in the
area, and then is inspired, in the manner of all artists, to create a set of drawings
which a general contractor, in occasional conference with the architect, reduces to
a physical object.

This view of architecture should be familiar to software theorists: It corre-
sponds to the Waterfall Model with a Niagara-sized waterfall. The analyst or
designer studies requirements, construction techniques (choice of language), and
the context (related software) and, in the manner of all artists, creates the design
which he or she happily tosses over a large wall for someone else to implement.

Enlightened folks nowadays tend to view askance this methodology, preferring
one or another variant of the Spiral Model. (To be fair, the original Waterfall
Model contains backward arrows linking later stages to earlier ones in a feedback
type of arrangement, so there actually is not as sharp a contrast between the
Waterfall and other models as some would have us believe.)

In fields separated into theory and practice we frequently find that aesthetics
are fragmented. The theorist is often interested in beauty of a nature akin to
mathematical beauty. In computer science such beauty is exactly mathematical
beauty—Occam’s razor slicing away fat, eliminating ornamentation, the hard
chill beauty of a compact, precisely clever theorem. In architecture the architect
works with drawings and models. The beauty of a drawing is not the beauty of a
building. A beautiful drawing has spare lines, simple geometric shapes. A home or
town is involved, ornamented, shows a care for human interests. Only an inhabit-
ant could know what really counts.

The first of Alexander’s contributions to architecture was to reject the separate
architect and builder model and to posit user-centered design—in which users
(inhabitants) design their own buildings—and the architect-builder who would
blend the activities of design and construction. This was viewed by architects as
high treason enough, let alone the curious quest for an elusive quality that Alex-
ander cannot name.

The mechanism he proposed to accomplish his new model was the pattern
language. A pattern language is a set of patterns used by a process to generate arti-
facts. These artifacts can be considered complexes of patterns. Each pattern is a
kind of rule that states a problem to be solved and a solution to that problem. The
means of designing a building, let’s say, using a pattern language is to determine
the most general problem to be solved and to select patterns that solve that prob-
lem. Each pattern defines subproblems that are similarly solved by other, smaller
patterns. Thus we see that the solution to a large problem is a nested set of
patterns.

Of course, because usually several patterns can solve a given problem, and any
pattern requires a particular context to be eff ective, the process is generally not

PATTERN LANGUAGES / 47

linear but is a sort of constraint-relaxation process. These days we know all about
this sort of process, but back when Alexander came up with pattern languages, it
was relatively new. His initial work was done when Noam Chomsky’s transforma-
tional grammar was first in vogue, and the idea of a human activity—especially a
creative one—being subject to rules and generated by a language was hard to
swallow.

One interesting aspect of this approach is that it isn’t grounded ultimately in
things but stays at the level of patterns throughout. Some patterns talk about par-
ticular construction materials, but rarely is anything like a kitchen or a toilet
mentioned. This is partly to maintain a level of elegance—there are only patterns
and patterns of patterns, not things and patterns mixed—but also because the
patterns talk, in addition, about social and human activities. For example, a stove
is really a relationship between a surface, heating elements, thermostats, and
switches, and a stove is part of a pattern of activity—cooking a meal, perhaps in a
social context. Viewed this way, a stove is also a pattern within a larger pattern
which is the whole kitchen whose other patterns involve refrigerators, preparation
surfaces, cupboards, utensils, dining areas, walls, natural light sources, gardens,
doors, and possibly much, much more. Some of the patterns must be imple-
mented physically near one other, adding a layer of constraints on the solution to
the kitchen design/construction process.

The way Alexander motivates pattern languages is with the example of barns.
A farmer in a particular Swiss valley wishes to build a barn. Each barn has a dou-
ble door to accommodate the haywagon, a place to store hay, a place to house the
cows, and a place to put the cows so they can eat the hay; this last place must be
convenient to the hay storage location so it is easy to feed the cows. There must be
a good way to remove the cow excrement, and the whole building has to be struc-
turally sound enough to withstand harsh winter snow and wind.

If each farmer were to design and build a barn based on these functional
requirements, each barn would be diff erent, probably radically diff erent. Some
would be round, the sizes would vary wildly, some would have double naves, dou-
bly pitched roofs.

But barns in Swiss valleys do not vary wildly, so each farmer must be copying
something. The farmer is not copying a specific other barn, because the barns do
vary somewhat. Each is a little diff erent because of where it is located and each
farmer’s particular needs. Therefore, farmers do not copy particular barns. Alex-
ander says that each farmer is copying a set of patterns which have evolved to
solve the Swiss-valley-barn problem. Barns in any given Swiss valley are similar, as
are all alpine barns. They also are similar to barns in other areas of the world—a
family resemblance among buildings—but they do have diff erences. For example,
California barns are generally larger although they share the same general shape.

Here, again, is my working definition of abstraction:

48 / PATTERNS OF SOFTWARE

Abstraction in programming is the process of identifying common
patterns that have systematic variations; an abstraction represents
the common pattern and provides a means for specifying which vari-
ation to use. (Balzer et al. 1989)

Patterns in Alexander’s sense are a lot like the common patterns but without

the systematic variations. For Alexander, the variations of a pattern depend on the

other patterns it contains and those containing it, thus eliminating the possibility

of systematic variations. Patterns are not well structured enough to have system-

atic variations—their variations are too context dependent.

This is the format of patterns as presented in A Pattern Language (Alexander

1977b):

First, there is a picture, which shows an archetypal example of that
pattern. Second, after the picture, each pattern has an introductory
paragraph, which sets the context for the pattern by explaining how it
helps to complete certain larger patterns. Then there are three dia-
monds to mark the beginning of the problem. After the diamonds
there is a headline, in bold type. This headline gives the essence of the
problem in one or two sentences. After the headline comes the body of
the problem. This is the longest section. It describes the empirical
background of the pattern, the evidence for its validity, the range of
diff erent ways the pattern can be manifested in a building, and so on.
Then, again in bold type, like the headline, is the solution—the heart
of the pattern—which describes the field of physical and social rela-
tionships which are required to solve the stated problem, in the stated
context. This solution is always stated in the form of an instruction—
so that you know exactly what you need to do, to build the pattern.
Then, after the solution, there is a diagram, which shows the solution
in the form of a diagram, with labels to indicate its main compo-
nents.

After the diagram, another three diamonds, to show that the main
body of the pattern is finished. And finally, after the diamonds there is
a paragraph which ties the pattern to all those smaller patterns in the
language, which are needed to complete the pattern, to embellish it,
to fill it out.

There are two essential purposes behind this format. First, to
present each pattern connected to other patterns, so that you grasp
the collection of . . . patterns as a whole, as a language within which
you can create an infinite variety of combinations. Second, to present
the problem and solution of each pattern in such a way that you can
judge it for yourself, and modify it, without losing the essence that is
central to it. (Alexander 1977b)

PATTERN LANGUAGES / 49

Alexander’s book contains 253 patterns covering regions, cities, towns, neigh-
borhoods, transportation, homes, offices, work communities, relaxation areas,
rooms, lighting, windows, gardens, waiting rooms, terraces, walls, building mate-
rials, and construction. One thing that strikes many readers of the pattern lan-
guage is the degree to which Alexander talks about people and their activities in
the patterns—the patterns are a response to his arguments about how life is best
lived. Because of this, many regard A Pattern Language as a manual of how to live
and how physical surroundings can support and enhance living.

The book is full of evocative black-and-white photographs of towns, parts of
homes, scenes of life in Europe, Greece, the Middle East, Asia—all over—each
demonstrating a place with the quality without a name and which the patterns are
intended to create.

Alexander says:

And yet, we do believe, of course, that this language which is
printed here is something more than a manual, or a teacher, or a
version of a possible pattern language. Many of the patterns here
are archetypal—so deep, so deeply rooted in the nature of things,
that it seems likely that they will be a part of human nature, and
human action, as much in five hundred years, as they are to-
day. . . .

In this sense, we have also tried to penetrate, as deep as we are
able, into the nature of things in the environment. . . .
(Alexander 1977b)

Let me present an example pattern—I’ll condense it quite a bit to save space.

179. Alcoves**
. . . many large rooms are not complete unless they have smaller

rooms and alcoves opening off them. . . .

✥ ✥ ✥

No homogeneous room, of homogeneous height, can serve a group
of people well. To give a group a chance to be together, as a group, a
room must also give them the chance to be alone, in one’s and two’s in
the same space.

This problem is felt most acutely in the common rooms of a
house—the kitchen, the family room, the living room. In fact, it is so
critical there, that the house can drive the family apart when it
remains unsolved. . . .

In modern life, the main function of a family is emotional; it is a
source of security and love. But these qualities will only come into
existence if the members of the house are physically able to be
together as a family.

50 / PATTERNS OF SOFTWARE

This is often difficult. The various members of the family come
and go at diff erent times of day; even when they are in the house,
each has his own private interests. . . . In many houses, these interests
force people to go off to their own rooms, away from the family. This
happens for two reasons. First, in a normal family room, one person
can easily be disturbed by what the others are doing. . . .Second, the
family room does not usually have any space where people can leave
things and not have them disturbed. . . .

To solve the problem, there must be some way in which the mem-
bers of the family can be together, even when they are doing diff erent
things.

Therefore:

Make small places at the edge of any common room, usually no
more than 6 feet wide and 3 to 6 feet deep and possibly much smaller.
These alcoves should be large enough for two people to sit, chat, or
play and sometimes large enough to contain a desk or table.

✥ ✥ ✥

Give the alcove a ceiling which is markedly lower than the ceiling
height in the main room. . . . (Alexander 1977b)

What’s interesting to me is the argument about how families are served by
alcoves. This seems to go well with Alexander’s desire to emphasize that the
quality without a name is concerned with life and living. In fact, he says:

You see that the patterns are very much alive and evolving.
(Alexander 1977b)

Part of Alexander’s research program is to creative generative patterns—
patterns that generate the quality without a name. Generativeness is an inter-
esting trait. Typically something is said to be generative when it produces the
generated quality indirectly.

A good example of a generative process is a random-number generator. Such
programs perform simple arithmetic operations on simple starting quantities and
produce a stream of numbers with have no simple relation to one other. If we

PATTERN LANGUAGES / 51

look inside the generator, we don’t see any structure or parts that are clearly
related to the purpose of generating random numbers.

Another example from a diff erent domain is advice on how to hit a tennis ball.
The advice I’m thinking of is that you should not concentrate on hitting the ball
at the point of impact but, instead, on hitting a point beyond the ball in the
direction the racket is moving. The purpose of this advice is to avoid the eff ects of
the muscles trying to slow down or stop at the point of impact. That is, if I ask
you to hit a particular thing with a racket, your muscles will propel the racket
toward the target, and just before hitting the target, the muscles controlling
opposing movement will contract slightly in order to decelerate to the point of
impact—though you will not, obviously, be decelerating to zero velocity, you will
decelerate a little. The result of this small deceleration is to cause the racket to
jiggle or jitter and for the impact to be less precise. If, on the other hand, you are
told to hit something just beyond the target, your muscles will not involuntarily
contract until you have hit the target, and as a result, the hit and trajectory will be
smoother.

This is the same advice given to martial arts students who are attempting to
break boards and bricks.

Such advice is generative: The goal is to hit smoothly and with full power, but
this goal is not part of the advice. Rather, the advice is to do something else which
has the side eff ect of achieving the goal.

Patterns in a pattern language are intended to be generative—they are supposed
to generate the quality without a name. Just as the advice to write clearly and simply
is not possible to follow—because writing clearly and simply is achieved by choos-
ing words and syntax carefully, by choosing presentation order, and by deciding
how to emphasize topics in sentences and paragraphs—neither is the advice to pro-
duce the quality without a name.

� � �

The question we face is how pattern languages apply to software development.
People who have tried to apply pattern languages to software have done what you
might describe as the obvious thing: They started to develop patterns that are a
prescription of how to solve particular problems that come up in development.
This isn’t new. For example, Knuth’s The Art of Computer Programming (1969) is a
multivolume book that contains exactly such information. This book presents
programming situations and problems and describes, in the manner of a text-
book, various solutions. A large consideration for Knuth is the performance—
time and space complexity—of solutions, and he treats performance very mathe-
matically.

Patterns provide several benefits to programmers and system developers. One is
a common language. I’ve heard many discussions about programs in which the

52 / PATTERNS OF SOFTWARE

common reference points are algorithms and data structures Knuth describes—and
the discussions frequently refer to such algorithms or data structures by citing
Knuth’s name for them and the volumes in which the descriptions can be found.

Another benefit is a common base for understanding what is important in
programming. That is, every pattern in a program is a signpost that helps devel-
opers new to a program rapidly understand it. Each common pattern is both
important and points out its important subpatterns. For example, in low-level
programming languages, people often write while loops with the test at the end.
When you first come across this style of loop, you wonder what it’s all about—
your ability to understand a program is challenged by the puzzle of why this loop
is coded this peculiar way. Well, most people figure it out sooner or later or at
least come to understand the purpose of the code. However, they can understand
it more rapidly if they have read Knuth’s while-loop optimization discussion—
with such knowledge they can instantly recognize the Knuth while loop, and it is
a matter of recognizing a pattern. The loop pattern is important, and the pattern
highlights the meat of the loop—the part that is repeated—along with the loop
test.

A third benefit is that with a corpus of patterns a programmer is able to solve
problems more rapidly by having available a storehouse of solutions—a cookbook,
if you will.

Among the folks who write software patterns is the Hillside Group. This group
is at least spiritually led by Kent Beck and has met once or twice to talk about pat-
terns and to gather them up—it’s a sort of a writers workshop group for writing
patterns.

This group, like many others concerned with patterns, focuses on objects and
object-oriented programming. The idea is that behavior in object-oriented pro-
grams comes largely from configurations of objects and classes sending messages
to one another according to protocols. The analogy to architecture should be
plain.

Let’s look at a pattern discussed by this group. I will, again, abbreviate it.

Pattern: Concrete Behavior in a Stateless Object
Context: You have developed an object. You discover that its

behavior is just one example of a family of behaviors you need to
implement.

Problem: How can you cleanly make the concrete behavior of an
object flexible without imposing an unreasonable space or time cost,
and with minimal eff ect on the other objects in the system?

Constraints: No more complexity in the object. . . . Flexibility—
the solution should be able to deal with system-wide, class-wide, and
instance-level behavior changes. The changes should be able to take
place at any time. . . . Minimal time and space impact. . . .

PATTERN LANGUAGES / 53

Solution: Move the behavior to be specialized into a stateless
object which is invoked when the behavior is invoked.

Example: The example is debug printing. . . . (Kent Beck, personal

communication 1993)

The example actually explains the solution a lot better than does the solution
description—the example is given in Smalltalk. The idea is that you define a side
object (and a class) that has the behavior you want by defining methods on it. All
the methods take an extra argument which is the real object on which to operate.
Then you implement the desired behavior on the original object by first sending a
message to self to determine the appropriate side object and then sending the
side object a message with the real object as an extra argument. By defining the
method that returns the side object you can get either instance-level, class-level,
or global changes in behavior.

This is a useful pattern, and you can imagine how a book full of stuff like this
would turn a smart but inexperienced object programmer into something a little
closer to an expert.

Patterns seem to be a partial solution to the overabstraction problem I talked
about in “Abstraction Descant.” They are a way to take advantage of common pat-
terns without building costly, confusing, and unnecessary abstractions when the
goal is merely to write something understandable. That is, when there are more idi-
oms to use, using them is far better than inventing a new vocabulary. There are lots
of reasons that abstractions are used, and I’m not saying we shouldn’t use them, but
let’s not confuse their convenience in some situations as proof of their unqualified
usefulness. For example, abstractions allow us to avoid typing (fingers pounding
the keyboard). However, avoiding typing is something a programming environ-
ment is supposed to help accomplish, and one can imagine a programming envi-
ronment that would let people use a pattern about as easily as an ordinary
abstraction. Keep in mind that the most useful patterns are quite large, like the one
regarding concrete behavior in stateless objects. Furthermore, as Alexander points
out, patterns interact with larger and smaller patterns in such a way that the actual
manifestation of any given pattern is influenced by and influences several or many
other patterns.

Alexander talks about the poetry of patterns. Poetry is at least partly distin-
guished from prose by its stronger use of compression. Compression is that char-
acteristic of a piece in some language in which each word assumes many
meanings and derives its meaning from the context. In this way, a small expres-
sion can perform a lot of tasks because the context is rich. This is one reason that
inheritance works and is also a way that inheritance can go wrong. When you
write a subclass, you can reuse the methods above it—and the code you write is
compressed because it takes its meaning from the context of its superclasses. This

54 / PATTERNS OF SOFTWARE

is good, but if you have a deep or dense hierarchy, you could easily spend a lot of
time understanding it in order to write correct, highly compressed code.

For patterns, you can have compression if several patterns are present in one
space. Alexander says:

It is quite possible that all the patterns for a house might, in some
form, be present, and overlapping, in a simple one-room cabin. The
patterns do not need to be strung out, and kept separate. Every build-
ing, every room, every garden is better, when all the patterns which it
needs are compressed as far as it is possible for them to be. The build-
ing will be cheaper; and the meanings in it will be denser.
(Alexander 1977a)

Compression is what we saw when we looked at the constraints of European
and some Third-World architecture: small scale. With limited space, all the fea-
tures that people require to live must be present in the space available. This forces
people to be clever to design in all the parts in minimal space, most likely by over-
lapping and causing this poetry—the poetry of compression. It also forces things
into small, irregular pieces.

The question is: Is software that is compressed better than software that is not?
I think there is a great deal of admiration for compressed software, but is it more
maintainable?

� � �

Patterns in software are a good idea, but I have rarely seen the attention to the
human side—to living within software—that I see in Alexander’s patterns. One
architect commented on Alexander that he regarded the patterns as providing
information, sort of heuristics, about architecture, and I have to admit the pat-
terns I’ve seen about software do that—they provide information that the soft-
ware practitioner just plain ought to know.

But the picture is not quite complete, and I fear it may never be. The use of
patterns is clearly helpful, if for no other reason to capture in a common format
programming lore and tips—a sort of better-organized Art of Computer Program-
ming. The “but” concerns the quality without a name. Alexander hoped that his
pattern language would generate towns, buildings, communities, homes, offices,
gardens, and places with that quality. And he had the benefit of knowing what he
was trying to generate. He could go to Florence and walk the piazzas, the colon-
nades, the small hidden gardens, he could visit the temples in Kyoto, the perfect
alcoves in Norway, white hilltowns of Greece. We as computer scientists do not
have examples of programs exhibiting the quality without a name that we all can
agree on or even just name. That’s step 1. Step 2 is to understand the quality. I

PATTERN LANGUAGES / 55

took a stab at it in “The Quality Without a Name,” but I admit I was simply guess-
ing.

The worst thing is this: Alexander had the chance in the 1970s to try out his
pattern language. He observed the results of others trying it out and he even tried
it out himself several times. And guess what: It didn’t work. In one project in
Mexicali, Alexander, his colleagues, students, and a community of people con-
structed a community. Alexander says he found hints of the quality in only a few
places. Otherwise, the houses were “funky”. That is, when Alexander tried out his
theory, it failed.

The story is not over.

57

�
The Failure of Pattern Languages

We have been exploring the Christopher Alexander saga and it might surprise
some to learn that Alexander completed by the early 1970s all the work I’ve
reported so far—in what some would call the infancy of computer science. People
have read his work and taken off from it—The Hillside Group and others are
writing software patterns, believing they are doing something worthwhile—and
they are. But are they doing for software what Alexander set out to do for archi-
tecture—find a process to build artifacts possessing the quality without a name?
Or is the quality unimportant to what the software pattern writers are doing? Is it
important only that they are accomplishing something good for software, and
Alexander’s original goal is unimportant, merely a catalyst or inspiration—the
way fine drizzle drawing his eyes low, narrowing streetlights to a sheltering fog,
can inspire a poet to write a poem of intimacy and its loss? Or the way an inept
carpenter building an overly sturdy birdcage can inspire another person to con-
struct a tiger’s cage?

I think the quality without a name is vital to software development, but I’m
not yet sure how, because I am not clear on what the quality without a name is in
the realm of software. It sits zen in the midst of a typhoon frenzy of activity in
both architecture and software. Alexander’s story does not end with the publica-
tion of A Pattern Language in 1977. It went on and still goes on. And Alexander
did not sit still after he wrote the patterns. Like any scientist he tried them out.

And they did not work.

Read Alexander’s own words:

All the architects and planners in christendom, together with The
Timeless Way of Building (Alexander 1979) and the Pattern Lan-
guage (Alexander 1977a), could still not make buildings that are alive
because it is other processes that play a more fundamental role, other
changes that are more fundamental. (Grabow 1983)

58 / PATTERNS OF SOFTWARE

Alexander reached this conclusion after completing some specific projects.
One was the Modesto Clinic. In this project an architect from Sacramento used
Alexander’s pattern language to design and build a medical clinic in Modesto (in
the Central Valley of California). The building was a success in the sense that a
building was actually constructed and its plan looked good on paper. Alexander
noted:

Up until that time I assumed that if you did the patterns correctly,
from a social point of view, and you put together the overall layout of
the building in terms of those patterns, it would be quite alright to
build it in whatever contemporary way that was considered normal.
But then I began to realize that it was not going to work that way.
(Grabow 1983)

Even though the Sacramento architect tried hard to follow the patterns, the
result was dismal. Alexander says about the clinic:

It’s somewhat nice in plan, but it basically looks like any other build-
ing of this era. One might wonder why its plan is so nice, but in any
really fundamental terms there is nothing to see there. There was
hardly a trace of what I was looking for. (Grabow 1983)

This wasn’t an isolated failure, but one repeated frequently by other people trying
to use the pattern language from bootlegged copies of A Pattern Language:

Bootleg copies of the pattern language were floating up and down the
West Coast and people would show me projects they had done and I
began to be more and more amazed to realize that, although it
worked, all of these projects basically looked like any other buildings
of our time. They had a few diff erences. They were more like the
buildings of Charles Moore or Joseph Esherick, for example, than the
buildings of S.O.M. or I. M. Pei; but basically, they still belonged per-
fectly within the canons of mid-twentieth century architecture. None
of them whatsoever crossed the line. (Grabow 1983)

Alexander noticed a more bizarre phenomenon than the fact that the buildings
were no diff erent from their contemporaries—the architects believed they were
diff erent, vastly and remarkably diff erent. Alexander said:

They thought the buildings were physically diff erent. In fact, the peo-
ple who did these projects thought that the buildings were quite diff er-
ent from any they had designed before, perhaps even outrageously so.
But their perception was incredibly wrong; and I began to see this
happening over and over again—that even a person who is very
enthusiastic about all of this work will still be perfectly capable of

THE FAILURE OF PATTERN LANGUAGES / 59

making buildings that have this mechanical death-like morphology,
even with the intention of producing buildings that are alive.

So there is the slightly strange paradox that, after all those years of
work, the first three books are essentially complete and, from a theo-
retical point of view, do quite a good job of identifying the diff erence
but actually do not accomplish anything. The conceptual structures
that are presented are just not deep enough to actually break down
the barrier. They actually do not do anything. (Grabow 1983)

Alexander determined that they failed because the geometry of the buildings
was not as diff erent from the standard modern geometry as it needed to be to
generate the quality. One of his reactions was to consider the process of building:
the mortgage process, the zoning process, the construction process, the process of
money flowing through the system, the role of the architect, and the role of the
builder. By controlling the process, you control the result, and if the control
retains the old, broken process, the result will be the old, broken architecture.

This resonates with what we see in software development: The structure of the
system follows the structure of the organization that put it together, and to some
extent, its quality follows the nature of the process used to produce it. The true
problems of software development derive from the way the organization can dis-
cover and come to grips with the complexity of the system being built while
maintaining budget and schedule constraints. It is not common for organizations
to try to put together a novel large artifact, let alone doing it on schedule. When
an engineering team designs and builds a bridge, for example, it is creating a vari-
ant of a well-known design, and so many things about that design are already
known that the accuracy of planning and scheduling depends on how hard the
people want to work, not on whether they can figure out how to do it.

Even while considering process, Alexander never lost sight of geometry.

[T]he majority of people who read the work, or tried to use it, did not
realize that the conception of geometry had to undergo a fundamen-
tal change in order to come to terms with all of this. They thought
they could essentially graft all the ideas about life, and patterns, and
functions on to their present conception of geometry. In fact, some
people who have read my work actually believe it to be somewhat
independent of geometry, independent of style—even of architecture.
(Grabow 1983)

From the time when buildings routinely possessed the quality without a name
to the present when almost no buildings possess that quality, the process of build-
ing has changed from the so-called renaissance building paradigm to the current
industrial building paradigm, from one in which building was a decentralized
activity in which the architect, if one was used, was closely associated with the

60 / PATTERNS OF SOFTWARE

building or even participated in the building, and material was handcrafted on
site, to one in which an architect might design hundreds of homes which were
then built by a contractor buying and using modular parts, perhaps minimally
customizing them—for example, cutting lumber to the proper length. At the
same time, because building became a high-volume activity, the process of fund-
ing building changed so that, now, a large sum of money needs to be allocated to
produce any homes at all.

As I mentioned in “Habitability and Piecemeal Growth,” one problem with the
building process is lump-sum development. In such development few resources are
brought to bear on the problems of repair and piecemeal growth. Instead, a large
sum of money is dedicated to building a large artifact, and that artifact is allowed
to deteriorate somewhat, and anything that is found lacking in the design or con-
struction is ignored or minimally addressed until it is feasible to abandon the
building and construct a replacement. This phenomenon also occurs in the mort-
gage process. The bank lends someone, say a developer, a large sum of money to
construct a home. A homebuyer purchases this home by assuming a large debt.
The debt is paid off over time, with the early payments dedicated mostly to paying
the interest, which accumulates, and only at the end of the mortgage period is the
principal taken down. The result is that a homeowner might pay $1 million for a
house that cost $400,000 to build. The problem with this—aside from all the
problems you can easily identify yourself—is that the additional $600,000 paid
for the house is not available for repair and piecemeal growth. It is a fee to the
bank. And the house is not improved in any way or only minimally during the
payment period—10 to 30 years—at which point the house is sold to someone
else who pays another (or the same!) bank another enormous fee. The key ingre-
dient to long-term development—piecemeal growth—is thwarted.

Alexander started a lengthy process himself of constructing arguments to show
that process itself was the root cause for the practical failure of his theory of the
quality without a name and of his particular pattern language—that the process
of construction encompassed so many things controlling geometry that the out-
come had to be as flawed and disappointing as what he saw in the early, uncon-
trolled experiments.

First he needed to convince himself that process could be the primary deter-
miner of the outcome of a generative process. He got this from D’Arcy Thomp-
son; Alexander said:

What Thompson insisted on was that every form is basically the end
result of a certain growth process. When I first read this I felt that of
course the form in a purely static sense is equilibrating certain forces
and that you could say that it was even the product of those forces—
in a non-temporal, non-dynamic sense, as in the case of a raindrop,
for example, which in the right here and now is in equilibrium with

THE FAILURE OF PATTERN LANGUAGES / 61

the air flow around it, the force of gravity, its velocity, and so forth—
but that you did not really have to be interested in how it actually got
made. Thompson however was saying that everything is the way it is
today because it is the result of a certain history—which of course
includes how it got made. But at the time I read this I did not really
understand it very well; whereas I now realize that he is completely
right. (Grabow 1983)

It’s somewhat amazing that Alexander would fail to understand this right off,
because his theory—patterns generating the quality without a name—is an
example of it. His error, if there was one, was not to go far enough with his theory.
Once he latched onto this insight he went hog wild. First he examined the process
closely, identifying places where its details did not serve the quality without a
name and geometry. Second, he performed several important experiments in
which he controlled or nearly controlled the entire process.

These experiments were based on an alternative process developed by Alex-
ander, which he called the “grassroots housing process.” The basic idea is that a
sponsor—a group of people, a corporation—would provide land at a reasonable
price. There would be a builder who was actually an architect, a builder, and a
manager rolled into one. Families would get an allotment of money to begin con-
struction. The builder would help, and with the pattern language each family
would build its own home. Each family would pay a fee per year with the follow-
ing characteristics. The fee would be based on square footage and would decline
from a very high rate in the early years to a very low one in later years. It was
assumed to take around 13 years to pay off the fee. Materials for building would
be free to families (of course, paid for by the fees). This means that families would
be encouraged initially to build small homes. Because materials would be free and
the only fees would be for square footage, each family would be encouraged to
improve or embellish its existing space and the cluster’s common space. As time
passed and the fees dropped in later years, homes could be enlarged. These clus-
ters would nest in the sense that there would be a larger “political” unit responsi-
ble for enhancing structures larger than any particular cluster. For example, roads
would be handled in this way and the political unit would be a sort of representa-
tive government.

The existence of free materials and nested clusters would, Alexander hoped,
create a mechanism for planning within a community and with a nearby or
enclosing community.

The builder would help the families do their own building by instruction or by
doing those jobs requiring the most skill. Each builder would have several
apprentices who would be trained on the job. A builder would work with a cluster
of families, and over time the builder would gradually move on to service another
cluster, at which point the first cluster would become self-sufficient.

62 / PATTERNS OF SOFTWARE

The way this scheme would work, of course, is the same way the banks work,
but with a lower fee and with the community—the cluster—acting as the bank.
Profits from the process would be used to sponsor other clusters.

After presenting this proposed process, Christopher Alexander was shocked to
be quizzed about his views on Marxism. Nevertheless, two important concepts
came out of it: the nested cluster with shared common areas and the architect-
builder.

This led to several projects. One was to see whether local politics could be
changed to support this new building process. To this end Alexander managed to
get passed a Berkeley referendum in the early 1970s that put a moratorium on
new construction and established a commission to look into a new master plan
based on participatory planning of the sort talked about in The Oregon Experi-
ment (Alexander 1975). The result was not quite what he had in mind: There was a
new master plan, but one that asked local neighborhoods which streets could be
closed. As a result, some of them were—if you drive through Berkeley today, you
can still experience the results.

The most ambitious experiment was to build a community in Mexicali. The
Mexican government became convinced that Alexander would be able to build a
community housing project for far less than the usual cost, so they gave him the
power he felt he needed to organize the project. The land was provided in such a
way that the families together owned the encompassed public land and each fam-
ily owned the land on which their home was built. The point of the experiment
was to see whether with a proper process and a pattern language, a community
could be built that demonstrated the quality without a name. Because of the
expected low cost of the project and the strong recommendation of the University
of Mexico regarding Alexander’s work, the Mexican government was willing to
allow Alexander to put essentially into practice his grassroots system of produc-
tion. The details of this system hinged on the answers to these questions (all seven
questions are from Alexander 1985):

1. What kind of person is in charge of the building operation itself?

An architect-builder is in charge. This corresponds to the master
architect of a software system who also participates in coding and
helps his codevelopers with their work.

2. How local to the community is the construction firm responsible for
building?

Each site has its own builder’s yard, each responsible for local
development. This corresponds to putting control of the com-
puter and software resources for each small project within that
project. Local control and physically local resources are impor-
tant.

THE FAILURE OF PATTERN LANGUAGES / 63

3. Who lays out and controls the common land between the houses,
and the array of lots and houses?

This is handled by the community itself, in groups small enough
to come to agreement in face-to-face meetings. This corresponds
to small group meetings to discuss and negotiate interfaces in a
project. There is no centralized decision maker, but a community
of developers sits down and discusses in the group the best inter-
faces.

4. Who lays out the plans of individual houses?

Families design their own homes. This corresponds to each devel-
oper designing his or her own implementations for a component.

5. Is the construction system based on the assembly of standard com-
ponents, or is it based on acts of creation which use standard pro-
cesses?

Construction is based on a standard process rather than by stan-
dard components. This goes against one of the supposed tenets
of the object philosophy in which standardized class libraries are
de rigueur. Nevertheless, many experiences show that the true
benefits of reuse come from reuse within a project and not as
much from among projects. Such successful reuse is based on
being able to model the domain of the project so that classes
defined to represent aspects of the domain can be used for sev-
eral purposes within that same model. Typically such a model is
called a framework.

6. How is cost controlled?

Cost is controlled flexibly so that local decisions and trade-offs
can be made. This corresponds to giving a project a total budget
number rather than breaking it down too far, such as one budget
for hardware and another for developers.

7. What is the day-to-day life like, on-site, during the construction
operation?

It is not just a place where the job is done but a place where the
importance of the houses themselves as homes infuses the every-
day work. Developers need to have their own community in
which both the work and the lives of the developers are shared:
meals, rest time together in play. It’s called team building in the

64 / PATTERNS OF SOFTWARE

management literature, but it’s more than that, and every devel-
opment manager worth paying knows that this is one of the most
important parts of a project.

You might wonder why Alexander (or I, for that matter) considers a project’s
day-to-day life to be important. It’s because the quality of the result depends on
the quality of communication between the builders or developers, and this
depends on whether it is fun to work on the project and whether the project is
important to the builder or developer in a personal sense and not just in a mone-
tary or job sense.

Alexander tells the story of this project—including the sorts of meals the fami-
lies had and their celebrations after completing major projects—in The Production
of Houses (1985). At the end of that book Alexander tells about the failures of the
project as seen close up—that is, before he was able to sit back and look at the
results objectively. He says there were a number of failures. First, the Mexican gov-
ernment lost faith in the project and pulled the plug after five houses were built,
leaving 25 unbuilt. Partly they lost faith because the buildings looked “traditional”
rather than modern. Alexander said:

The almost naïve, childish, rudimentary outward character of the
houses disturbed them extremely. (Remember that the families, by
their own frequent testimony, love their houses.) (Alexander 1985)

Another reason was that the government was dismayed by Alexander’s experi-
mentation with construction systems. The government felt that because Alex-
ander was a world authority on architecture and building, he would simply apply
what he knew to produce beautiful homes cheaply and rapidly.

One failure that seemed to disturb Alexander was that the builder’s yard was
abandoned within three years of the end of the project. He felt that the process
would have continued without his involvement once the families saw that they
could control their own living spaces.

But did the buildings and the community have the quality without a name?
Alexander said at the time:

The buildings, for example, are very nice, and we are very happy that
they so beautifully reflect the needs of diff erent families. But they are
still far from the limpid simplicity of traditional houses, which was
our aim. The roofs are still a little awkward, for example. And the
plans, too, have limits. The houses are very nice internally, but they
do not form outdoor space which is as pleasant, or as simple, or as
profound as we can imagine it. For instance, the common land has a
rather complex shape, and several of the gardens are not quite in the
right place. The freedom of the pattern language, especially in the

THE FAILURE OF PATTERN LANGUAGES / 65

hands of our apprentices, who did not fully understand the deepest
ways of making buildings simple, occasionally caused a kind of con-
fusion compared with what we now understand, and what we now
will do next time. (Alexander 1985)

This chilling reference to the deep understanding required to build buildings
with the quality without a name is echoed in the discussion of the builder’s yard:

When their [the government’s] support faded, the physical buildings
of the builder’s yard had no clear function, and, because of peculiari-
ties in the way the land was held, legally, were not transferred to any
other use, either; so now, the most beautiful part of the buildings
which we built stand idle. And yet these buildings, which we built
first, with our own deeper understanding of the pattern language,
were the most beautiful buildings in the project. That is very distress-
ing, perhaps the most distressing of all. (Alexander 1985)

Later, after some reflection Alexander became more harsh:

There was one fact above everything else I was aware of, and that was
that the buildings were still a bit more funky than I would have liked.
That is, there are just a few little things that we built down there that
truly have that sort of limpid beauty that have been around for ages
and that, actually, are just dead right. That’s rare; and it occurred in
only a few places. Generally speaking, the project is very delightful—
diff erent of course from what is generally being built, not just in the
way of low-cost housing—but it doesn’t quite come to the place where
I believe it must.

. . . But what I am saying now is that, given all that work (or at
least insofar as it came together in the Mexican situation) and even
with us doing it (so there is no excuse that someone who doesn’t
understand it is doing it), it only works partially. Although the pat-
tern language worked beautifully—in the sense that the families
designed very nice houses with lovely spaces and which are com-
pletely out of the rubric of modern architecture—this very magical
quality is only faintly showing through here and there. (Grabow 1983)

Alexander noticed a problem with using the word simplicity to refer to the fun-
damental goal of the patterns:

We were running several little experiments in the builder’s yard.
There is an arcade around the courtyard with each room off of the
arcade designed by a diff erent person. Some of the rooms were
designed by my colleagues at the Center and they also had this
unusual funkiness—still very charming, very delightful, but not calm

66 / PATTERNS OF SOFTWARE

at all. In that sense, vastly diff erent from what is going on in the four-
hundred year old Norwegian farm where there is an incredible clarity
and simplicity that has nothing to do with its age. But this was typi-
cal of things that were happening. Here is this very sort of limpid sim-
plicity and yet the pattern language was actually encouraging people
to be a little bit crazy and to conceive of much more intricate rela-
tionships than were necessary. They were actually disturbing. Yet in
all of the most wonderful buildings, at the same time that they have
all of these patterns in them, they are incredibly simple. They are not
simple like an S.O.M. building;—sometimes they are incredibly
ornate—so I’m not talking about that kind of simplicity. There is
however a kind of limpidity which is very crucial; and I felt that we
just cannot keep going through this problem. We must somehow
identify what it is and how to do it—because I knew it was not just
my perception of it.

The problem is complicated because the word simplicity com-
pletely fails to cover it; at another moment it might be exactly the
opposite. Take the example of the columns. If you have the opportu-
nity to put a capital or a foot on it, it is certainly better to do those
two things than not—which is diff erent from what the modern archi-
tectural tradition tells you to do. Now, in a peculiar sense, the reasons
for it being better that way are the same as the reasons for being very
simple and direct in the spacing of those same columns around the
courtyard. I’m saying that, wherever the source of that judgment is
coming from, it is the same in both cases. . . . The word simplicity is
obviously not the relevant word. There is something which in one
instance tells you to be simple and which in another tells you to be
more complicated. It’s the same thing which is telling you those two
things. (Grabow 1983)

Another part of the problem Alexander saw with the Mexicali project had to
do with the level of mastery needed in the construction process. At the start of the
project he felt that merely having the same person do both the design and the
construction was enough, so that the important small decisions dictated by the
design would be made correctly. But during the project and later on Alexander
learned that the builder needed more.

Only recently have I begun to realize that the problem is not merely
one of technical mastery or the competent application of the rules—
like trowelling a piece of concrete so that it’s really nice—but that
there is actually something else which is guiding these rules. It actu-
ally involves a diff erent level of mastery. It’s quite a diff erent process
to do it right; and every single act that you do can be done in that
sense well or badly. But even assuming that you have got the technical
part clear, the creation of this quality is a much more complicated

THE FAILURE OF PATTERN LANGUAGES / 67

process of the most utterly absorbing and fascinating dimensions. It is
in fact a major creative or artistic act—every single little thing you
do—and it is only in the years since the Mexican project that I have
begun to see the dimensions of that fact. (Grabow 1983)

Not only must you decide to build the right thing, but you also must build it
with skill and artistry. This leads to an obvious question: Are buildings with the
quality without a name just too hard to put together deliberately, and were they
created in older societies only by chance and survive only because of the quality?
Or even more cynically, is there a form of nostalgia at work in which everything
old is revered, because it comes from a more innocent and noble age?

There is another, chilling possibility: Perhaps it takes a real artist to create
buildings and towns possessing the quality without a name. If you think about it,
however, there is nothing really surprising or shocking about this.

Not everyone can write a great poem or paint a picture that will last through
the ages. When we go to museums, we see art with the quality without a name
and we are not surprised. And when we go to an adult-education art class we are
not surprised to see good art, but art that is a little funky and perhaps it’s diff erent
but it’s not great.

The question is whether it is possible to write down rules or patterns for archi-
tecture—and software and art—so that ordinary people can follow the rules or
patterns and, by the nature of the patterns and using only the abilities of ordinary
people, beauty is generated. If this happens, then the rules or patterns are genera-
tive, which is a rare quality.

Art teachers can provide generative rules. For example, my father watched and
“studied” the various art programs on public television for 15 years, and I’ll be
darned but he stopped painting like a fifth grader waiting for recess and started
being a pretty decent still-life and landscape painter. You won’t see his work in a
museum in 20 years, but if you saw it on the wall in my house, you wouldn’t bat
an eye.

What he learned about painting surprised me. I expected that the lessons
would talk about drawing skills and how to reproduce what you saw in reality by
attending to each detail in order to create an accurate reproduction. What he
learned instead was that by using the nature of the medium, the paint, the brush,
and brush strokes, he could create the same eff ects as those of reality through
reflected light and by the oil on canvas. So, instead—as I expected—of spending
hours painting each branch on a conifer, my father would dab and push with a
thick brush to create the eff ect of needled branches, and from a proper viewing
distance his conifers looked as real as real.

Let’s recall what Alexander said about the people who helped build the houses
in Mexicali and who live there: “Remember that the families, by their own frequent
testimony, love their houses.” Perhaps these houses did not live up to Alexander’s

68 / PATTERNS OF SOFTWARE

high artistic standards, but they were nice homes and served their users well. Like
my father’s paintings, they are better than the untutored could accomplish. And
there’s nothing wrong with that.

Perhaps Alexander’s pattern language is working as well as it can—it’s just that
the artistry required to make buildings having the quality without a name wasn’t
present in any of the families who worked with Alexander or even in Alexander’s
team. The failure of the pattern language in the bootleg-designed houses and in
Mexicali are maybe simply the failures of artistry.

Perhaps, and perhaps these are true failures, but this should not dissuade us
from considering how to create things with the quality without a name.

It is easy to see that the process of constructing buildings has an obvious corre-
spondent in software: The process of software construction is the single most
important determining factor in software quality. Alexander’s building process
adapted to software could be called a form of incremental development because it
advises the use of small groups with autonomy, architect-builders at the helm.

But what of geometry? Alexander always goes back to this. And one of his key
questions is: What dictates geometry possessing the quality without a name—
what is that thing that is falsely called simplicity?

What corresponds to geometry for us?

I think it is the code itself. Many talk about the need for excellent interfaces
and the benefits of separating interface from implementation so that the imple-
mentation may vary. But few people talk seriously about the quality of the code
itself. In fact, most theorists are eager to lump it into the category of things best
not discussed, something to be hidden from view so that it can be changed in pri-
vate. But think of Alexander’s remarks: The quality comes in nearly equal part
from the artistry and creativity of the builder who is the one whose hands most
directly form the geometry that gives the building its quality and character. Isn’t
the builder the coder? And isn’t the old-style software methodology to put design
in the hands of analysts and designers and to put coding in the hands of lowly
coders, sometimes offshore coders who can be paid the lowest wages to do the
least important work?

Methodologists who insist on separating analysis and design from coding are
missing the essential feature of design: The design is in the code, not in a docu-
ment or in a diagram. Half a programmer’s time is spent exploring the code, not
in typing it in or changing it. When you look at the code you see its design, and
that’s most of what you’re looking at, and it’s mostly while coding that you’re
designing.

Poincaré once said: “Sociologists discuss sociological methods; physi-
cists discuss physics.” I love this statement. Study of method by itself is
always barren. . . . (Alexander 1964)

THE FAILURE OF PATTERN LANGUAGES / 69

This could be a lesson for some of our software development methodologists:
Study software, not software methods.

Patterns can help designers and designer-coders to make sure they put the
right stuff in their software, but it takes a coder with extraordinary mastery to
construct software having the quality without a name.

And what of simplicity? Can it be that blind subservience to simplicity in soft-
ware development can lead to the same “death-like morphology” that it causes in
architecture?

� � �

In 1995, software developers are writing and publishing patterns, and the
“patterns movement” is gaining momentum. What are they actually doing?
Most of the patterns I’ve seen present solutions to technical problems. For
example, a pattern language I’m familiar with explains how to produce a
design for a program that will validate a complex set of input values presented
on forms that the end user fills in. It’s a very nice pattern language, but I’m not
sure where the quality without a name is in this language. If I needed to write
a system with a component that had to validate input fields, I would use it, but
I doubt that the quality would emerge from what I learned from the pattern
language.

From the pattern language I would learn the issues that go into an input vali-
dation component, and I would be able to get all the parts right, and perhaps
folks later on maintaining my component would have an easier job of it for my
having used the pattern language, but I doubt there would be any artistic merit in
it or the quality.

When I look at software patterns and pattern languages, I don’t see the quality
without a name in them, either. Recall that Alexander said that both the patterns
themselves and the pattern language have the quality. In many cases today the
pattern languages are written quickly, sort of like students doing homework prob-
lems. I heard one neophyte pattern writer say that when writing patterns he just
writes what he knows and can write four or five patterns at a sitting.

That patterns that I wrote neither possess the quality nor generate it is not sur-
prising. Patterns are an art form, and they are designed to generate art within the
domain about which they speak. Art is not created at the clip of four or five pieces
per sitting. It takes time and the right context and the right preparation to write
them.

My patterns are doggerel, just as are poems written quickly this way—four or
five at a sitting. Poetic doggerel serves a purpose: therapy. And maybe so does pat-
tern writing of the sort we’re talking about.

Patterns written in this way will almost never generate the quality without a
name, and it is likely that people who write patterns like this and see them fail will

70 / PATTERNS OF SOFTWARE

attribute the failure to the concept of patterns and pattern languages. And people
who use the patterns and fail may do so as well.

But Alexander’s pattern language is not doggerel: It was written by many peo-
ple over many years, and each was subject to extensive discussion and criticism
before being published. It is clear that the patterns themselves have the quality
without a name, and I think this is because Alexander and his colleagues are pat-
tern artists.

It just seems that the experiments that Alexander’s team did in Mexicali were
not done by artists or that the muse didn’t visit them during the process.

� � �

Alexander’s story is nearly up to date, but to many it disappears at the point we’ve
left him here. Our modern-day pattern writers are content to stop with A Pattern
Language and The Timeless Way of Building and to go off writing patterns. They
ignore the failures that Alexander himself saw in his own processes at that point.
The next chapter of his story takes him back to geometry and art. It’s probably a
story that has only the most metaphorical application to software because it has
to do with beads, beauty, art, geometry, and Turkish carpets.

71

�
The Bead Game, Rugs, and Beauty

People in software research continue to find inspiration in the work of Christopher

Alexander—they find his concept of pattern language a means to codify design

skills. Some of them, though, don’t see the relevance of the quality without a name,

and anyhow some doubt there is anything about older building styles than they

have survived through time by a process of natural selection—the old buildings we

see today in Europe, let’s say, are nicer because the cruddy ones were torn down

and the nice ones imitated.

To many software patterns folk the quality without a name doesn’t apply to

things like software anyhow. I agree that most software—at least the software I

see—doesn’t have such a quality, but does that mean it couldn’t? I find it odd,

though, to take so much inspiration from the simple, mechanical parts of a per-

son’s work—the form of the pattern language and terms like forces—but to ignore

the heart of it. I’m not so sure the quality without a name is irrelevant.

When we last left Christopher Alexander, he had apparently despaired in his

quest for the quality without a name based on his experiences with the Modesto

and Mexicali projects. In those projects his pattern language was used to construct

a clinic (Modesto) and a small community (Mexicali). In Modesto the architect in

charge was not able to control the process of spending and building as Alexander

advocated in his “grassroots housing process.” In the Mexicali project, where Alex-

ander was in charge and had a special arrangement with the Mexican government,

he had all the control he needed. But the results were disappointing. Alexander felt

the buildings were “funky” and only in places demonstrated a hint of the quality.

It is at this point that Alexander went off in search of a universal formative prin-

ciple, a generative principle governing form that would be shared by both the laws

of nature and great art. If the principle could be written down and was truly for-

mative, then aesthetic judgment and beauty would be objective and not subjective,

72 / PATTERNS OF SOFTWARE

and it would be possible to produce art and buildings with the quality without a
name.

If there were such a universal principle, any form that stirred us would do so at
a deep cognitive level rather than at a representational level, where its correspon-
dence to reality is most important. That is, the feeling great form in art gives us
would be a result of the form operating directly on us and in us rather than indi-
rectly through nature; and nature would share the same forms because the princi-
ple is universal. Many philosophers from Plato onward believed in this deeper
level of form, including Alexander. According to Herbert Read,

The increasing significance given to form or pattern in various
branches of science has suggested the possibility of a certain parallel-
ism, if not identity, in the structures of natural phenomena and of
authentic works of art. That the work of art has a formal structure of
a rhythmical, even of a precisely geometrical kind, has for centuries
been recognised by all but a few nihilists. That some at any rate of
these structures or proportions—notably the Golden Section—have
correspondence in nature has also been recognised for many years.
The assumption, except on the part of a few mystics, was that nature
in these rare instances, was paying an unconscious tribute to art; or
that the artist was unconsciously imitating nature. But now the reve-
lation that perception is itself a pattern-selecting and pattern-making
function (a Gestalt formation); that pattern is inherent in the physi-
cal structure and functioning of the nervous system; that matter itself
analyses into coherent patterns or arrangements of molecules; and
that the gradual realisation that all these patterns are eff ective and
ontologically significant by virtue of an organisation of their parts
which can only be characterised as aesthetic—all this development
has brought works of art and natural phenomena on to an identical
plane of inquiry. (Grabow 1983; Read 1951)

Alexander took this point of view seriously and proposed the “bead game con-
jecture,” a mechanism that unifies all forms—science, art, music, society.

That it is possible to invent a unifying concept of structure within
which all the various concepts of structure now current in diff erent
fields of art and science, can be seen from a single point of view. This
conjecture is not new. In one form or another people have been won-
dering about it, as long as they have been wondering about structure
itself; but in our world, confused and fragmented by specialisation,
the conjecture takes on special significance. If our grasp of the world is
to remain coherent, we need a bead game; and it is therefore vital for
us to ask ourselves whether or not a bead game can be invented.
(Alexander 1968)

THE BEAD GAME, RUGS, AND BEAUTY / 73

“Bead game” refers to Hermann Hesse’s imaginary game in which all forms—art,
science, nature—can be represented in a single way.

As I noted in “The Failure of Pattern Languages,” Alexander attributed this
failure of his pattern language to two things: The first was that the level of mastery
of the pattern language and of the building and design skills needed to produce
the quality without a name were in fact limited in the folks doing the work; and
the second was that the participants—the architects and builders—did not suffi-

ciently appreciate the geometrical aspects of beauty and the quality. Alexander
said:

I had been watching what happens when one uses pattern languages
to design buildings and became uncomfortably aware of a number of
shortcomings. The first is that the buildings are slightly funky—that
is, although it is a great relief that they generate these spontaneous
buildings that look like agglomerations of traditional architecture
when compared with some of the concrete monoliths of modern
architecture, I noticed an irritatingly disorderly funkiness. At the
same time that it is lovely, and has many of these beautiful patterns
in it, it’s not calm and satisfying. In that sense it is quite diff erent
from traditional architecture which appears to have this looseness in
the large but is usually calm and peaceful in the small.

To caricature this I could say that one of the hallmarks of pattern
language architecture, so far, is that there are alcoves all over the
place or that the windows are all diff erent. So I was disturbed by
that—especially down in Mexico. I realized that there were some
things about which the people putting up the buildings did not
know—and that I knew, implicitly, as part of my understanding of
pattern languages (including members of my own team). They were
just a bit too casual about it and, as a result, the work was in danger
of being too relaxed. As far as my own efforts were concerned, I real-
ized that there was something I was tending to put in it in order to
introduce a more formal order—to balance this otherwise labyrin-
thine looseness.

The other point is that even although the theory of pattern lan-
guages in traditional society clearly applies equally to very great
buildings—like cathedrals—as well as to cottages, there was the sense
that, somehow, our own version of it was tending to apply more to
cottages. In part, this was a matter of the scale of the projects we were
working on; but it also had to do with something else. It was almost
as if the grandeur of a very great church was inconceivable within the
pattern language as it was being presented. It’s not that the patterns
don’t apply; just that, somehow, there is a wellspring for that kind of
activity which was not present in either A Pattern Language (1977a)
or The Timeless Way of Building (1979). (Grabow 1983)

74 / PATTERNS OF SOFTWARE

More important, I think, is the fact that people did not quite understand the
geometrical nature of what Alexander was talking about. The geometrical nature
of the quality is brought out in Chapter 26 of The Timeless Way of Building, called
“Its Ageless Character.” Let me quote some passages from that chapter to give you
a flavor:

And as the whole emerges, we shall see it takes that ageless character
which gives the timeless way its name. This character is a specific,
morphological character, sharp and precise, which must come into
being any time a building or a town becomes alive: it is the physical
embodiment, in buildings, of the quality without a name. . . .

In short, the use of languages does not just help to root our build-
ings in reality; does not just guarantee that they meet human needs;
that they are congruent with forces lying in them—it makes a con-
crete diff erence to the way they look. . . .

This character is marked, to start with, by the patterns underlying
it. . . .

It is marked by greater diff erentiation.

If we compare these buildings [the ones with the quality without a
name] with the buildings of our present era, there is much more vari-
ety, and more detail: there are more internal diff erences among the
parts.

There are rooms of diff erent sizes, doors of diff erent widths, col-
umns of diff erent thickness according to their place in the building,
ornaments of diff erent kinds in diff erent places, gradients of window
size from floor to floor. . . .

The character is marked, in short, by greater diff erences, and
greater differentiation.

But it is marked, above all, by a special balance between “order”
and “disorder”.

There is a perfect balance between straight lines and crooked ones,
between angles that are square, and angles that are not quite square,
between equal and unequal spacing. This does not happen because
the buildings are inaccurate. It happens because they are more accu-
rate.

The similarity of parts occurs because the forces which create the
parts are always more or less the same. But the slight roughness or
unevenness among these similarities, come from the fact that forces
are never exactly the same. . . .

And it is marked, in feeling, by a sharpness and a freedom and a
sleepiness which happens everywhere when men and women are free
in their hearts. . . .

It is not necessarily complicated. It is not necessarily simple. . . .

THE BEAD GAME, RUGS, AND BEAUTY / 75

It comes simply from the fact that every part is whole in its own
right.

Imagine a prefabricated window which sits in a hole in a wall. It
is a one, a unit; but it can be lifted directly out from the wall. This is
both literally true, and true in feeling. Literally, you can lift the win-
dow out without doing damage to the fabric of the wall. And, in your
imagination, the window can be removed without disturbing the fab-
ric of what surrounds it.

Compare this with another window. Imagine a pair of columns
outside the window, forming a part of the window space. They create
an ambiguous space which is part of the outside, and yet also part of
the window. Imagine splayed reveals, which help to form the window,
and yet, also, with the light reflected off them, shining in the room,
they are also part of the room. And imagine a window seat leaning
against the window sill, but a seat whose back is indistinguishable
from the window sill, because it is continuous.

This window cannot be lifted out. It is one with the patterns which
surround it; it is both distinct itself, and also part of them. The
boundaries between things are less marked; they overlap with other
boundaries in such a way that the continuity of the world, at this
particular place, is greater. . . .

The timeless character of buildings is as much a part of nature as
the character of rivers, trees, hills, flames, and stars.

Each class of phenomena in nature has its own characteristic mor-
phology. Stars have their character; rivers have their character;
oceans have their character; mountains have their character; forests
have theirs; trees, flowers, insects, all have theirs. And when buildings
are made properly, and true to all the forces in them, then they too
will always have their own specific character. This is the character
created by the timeless way.

It is the physical embodiment, in towns and buildings, of the qual-
ity without a name. (Alexander 1979)

Notice the possibly disturbing implications for software if we are to take Alex-
ander at face value: In an Alexandrian system there is never any sense of modular-
ity at any level of detail. Our definition of abstraction (“Abstraction Descant”)
allows for variations in the abstractions, but systematic ones. Is this definition
flexible enough to capture the sense of freedom we get from Alexander’s descrip-
tions? For example, in his description of a window, we sense that every part of the
abstraction—the panes, the frame, the relation to parts not specifically part of the
window—is a little diff erent in each instance depending on the forces at work at
the window site. Instances of classes can acquire some of this flavor by varying the
state of each object, each one diff erent according to its role in the system; but is it
enough?

76 / PATTERNS OF SOFTWARE

Windows are windows because of their behavior vis-à-vis people: You can look
through them, open them for air and spring smells; they provide light, and some-
times they act like seats or meeting places. Certainly this seems like the sort of
variation we can expect from an object system—to be able to define a class of
object very abstractly according to its behavior—but are we, perhaps, expecting
too much in the variations? For instance, some windows provide light and air, but
others act as chairs if they have sills so constructed. And windows can be ambigu-
ous in their surroundings—can we possibly accommodate this in a modern,
structured software design? Perhaps; perhaps if we drop some of our expectations
regarding reuse, for instance, and universal applicability of abstractions. I’ll say
more about this later.

Alexander felt that people did not understand the geometrical nature of the
quality, but he is partly to blame. It is sometimes hard to extract the importance
of geometry from Timeless Way and Pattern Language possibly because he does
not want people to think that modern architecture, with its obvious simplified
geometry—large rectangular buildings designed to be looked at and not lived
in—is an example of good architecture. He laments:

I’ve known from various readings that the book has had, that most
people do not fully understand that chapter [Chapter 26]. It’s just too
short and it does not fully explain itself—although I was aware that
in that book I just could not do the topic justice. In other words, I
became increasingly aware of the fact that my own understanding of
this, among other things, existed at a very highly developed geometri-
cal level and that all of what The Timeless Way of Building (1979)
was about—all of its human psychological and social content, and all
of its political and constructional content—could actually be seen in
the geometry. That is, there was a particular morphological character
that exists in buildings which have this quality and which does not
exist in buildings which lack it—and furthermore, that this geomet-
rical character is describable and quite clear. But although I knew
that to be so, and thought that I had written about it, I actually had
not. I thought that Chapter 8—which has to do with the morpholog-
ical processes in nature—together with the patterns, and together
with Chapter 26, must make this clear. But in fact they do not.
(Grabow 1983)

Alexander was surprised that people didn’t understand that the geometrical
nature of his pattern language was fundamental. He felt he always knew that the
geometry had to be right, and he always knew that he could tell quickly that it was
right or wrong. I don’t think that even after Mexicali he fully appreciated the
importance of geometry, certainly not to the extent he seems to in his study of
Turkish carpets. The problem in Mexicali wasn’t obviously that everything was

THE BEAD GAME, RUGS, AND BEAUTY / 77

fine except for a lack of appreciation for geometry—it was that and also that the
general skill level was low and that families participating in the design were unfa-
miliar with the language and process. But from his experience Alexander began to
believe that maybe there was more to the geometry than even he appreciated and
that perhaps it was something the could be codified. Alexander said:

The point is that I was aware of some sort of field of stuff—some geo-
metrical stuff—which I had actually had a growing knowledge of for
years and years, had thought that I had written about or explained,
and realized that, although I knew a great deal about it, I had never
really written it down. . . .

In a diagnostic sense, I can say that if this geometrical field is not
present in something then there is something wrong there and I can
assess that fact within a few seconds. (Grabow 1983)

What is this geometrical field of stuff? We can understand some of it from two
things he did: a series of experiments with black-and-white serial patterns and an
analysis of his Turkish rug collection.

I’ll start with the series of experiments because it predates the Turkish rug
studies, although the results of the experiments make more sense in the context of
understanding the rugs.

In the 1960s at Harvard, Alexander performed an experiment in which he
asked subjects to rank-order a set of strips from most coherent and simple to least
coherent and simple. There were 35 strips, each consisting of three black squares
and four white ones. Here are two examples:

If there was good agreement among the subjects about which were simpler and
more coherent, then there would probably be some truth to the conjecture that
there is an objective quality of wholeness or coherence or simplicity. It turned out
there was excellent agreement; as Alexander wrote:

First, Huggins [Alexander’s coinvestigator] and I established that the
relative coherence of the diff erent patterns—operationally defined as
ease of perception—was an objective quality, that varied little from
person to person. In other words, the perceived coherence is not an
idiosyncratic subjective thing, seen diff erently by diff erent people. It is
seen roughly the same by everyone. (Alexander 1993)

At the top of the next page are the 35 strips ordered according to the test sub-
jects from most coherent at the top left, moving down the first column and then
down each column from left to right, with the least coherent at the bottom right.

78 / PATTERNS OF SOFTWARE

Next Alexander asked whether there was some way to explain this ranking.

Oddly—I think—there is a way. It has to do with counting what Alexander calls

subsymmetries. A subsymmetry is a symmetrical subsegment. Coherence is

strongly correlated with the number of subsymmetries. Here’s how you calculate

this number: Consider all the subsegments of sizes 2, 3, 4, 5, 6, and 7. There is 1

subsegment of length 7, 2 of length 6, 3 of length 5, and so forth—21 in all. Here

are the subsegments of length 3:

Now we simply count the number of subsegments that are symmetric. A

subsegment is symmetric if it looks the same reversed. Let me repeat the previ-

ous figure with the number of subsymmetries to the right of each strip:

That there is such a correlation is remarkable. I can’t say that I’m convinced

that the ordering made by Alexander’s subjects seems right to me; for example, I

would have put the strip at the bottom of the first column ahead of the ones just

above it. However, let’s assume the data is accurate and try to understand the idea

of subsymmetries.

It seems that people prefer symmetries that appear on all levels—so in Alex-

ander’s formula, small symmetries count as much as large ones. The first strip

(upper left) has symmetries all over the place, and it is pleasant to look at, but is it

really more coherent than the one at the bottom of the first column? It seems

more regular in some ways, and it is certainly more interesting—it seems more

complex, but it seems easier to remember, since there is a simple alternation

rather than the 1-2-1-2-1 of the other. Maybe it’s more coherent. The idea of sub-

symmetries seems to take this into account, perhaps a little too simplistically.

Alexander wrote:

8
7
8
6

9
9
7
9
7
7
7

6
6
7

6
6
6
6
6
6
6

6
6
6
5
6
5
6

6
6
6
5
5
5
5

THE BEAD GAME, RUGS, AND BEAUTY / 79

Thus, apparently. the perceived coherence of the diff erent patterns
depends almost entirely on the number of symmetrical segments
which they contain. Since each of the segments which is symmetrical
is a local symmetry I summarize this whole result, by saying that the
most coherent patterns are the ones which contain the largest number
of local symmetries or “subsymmetries.” (Alexander 1993)

When we look at his carpets, we’ll see the same thing.

I spent a couple of hours playing with some variations on his computation and
found one that correlated slightly better with experimental data and which fits his
remarks on rugs as well. My computation adds additional bias in favor of doubled
outer boundaries that diminishes exponentially as the boundary grows smaller.

For example, a strip like this has a bias added to its subsymmetry count (it is
not a legal strip in his experiment):

This serves to boost the score of the strip that is third from the top in the first col-
umn and the one at the bottom of that same column. But the improvement is
marginal. I suspect that perfect correlation requires a general algorithm like Alex-
ander’s, along with special cases for strips of overwhelming power. For example,
it’s hard to get the third strip from the top in the first column () to
come out third best when in general subsymmetries or something like them have
to count in order to get the simple alternation strip to come out first—in Alex-
ander’s subsymmetry algorithm it comes out as low as ninth, and in my revised
one it comes out fifth.

Notice that although there is an algorithmic way to determine whether a strip
is coherent (to some degree of accuracy), there is not yet a formative rule for it,
though I suspect there would be, perhaps a context-free grammar. But Alexander
didn’t find one.

When he moved into a study of Turkish carpets, he moved into a vastly more
complex world. Next we’ll look at his surprising look into the carpets, and, even
more surprisingly, we’ll see some glimmer of connection to software.

� � �

Alexander’s foray into rugs follows the strip-research vein, but on a far less scien-
tific basis. There are no studies, there are no numbers (though he does talk about
the number of “centers” in a carpet correlating with its “wholeness”). And in
general the results there are a little less compelling as argument but much more
compelling in beauty.

In the early 1970s Alexander began buying Turkish carpets, religious Turkish
carpets. He said:

80 / PATTERNS OF SOFTWARE

I was extremely innocent when I started out. I simply liked them. My
main concern was actually in their color. I was completely absorbed
by the question of color but never thought it would have any serious
connection to my work. Also, I never thought of my interest in these
rugs as having to do with geometry. (Grabow 1983)

He spent a lot of money—even getting into financial trouble; he became a rug
dealer for a while—and he became known to Bay Area rug collectors. In fact, his
carpets were once shown in a special exhibition at the DeYoung Museum in San
Francisco.

Most people who collect rugs have a special interest, such the village where the
rugs were woven or the treatment of a particular theme, but Alexander’s rugs
weren’t in such neat categories—they were chosen because they had something
special about them. Because he had so little money compared with the cost of
each carpet, he spent a lot of time looking at them before he bought them. He
wasn’t especially aware of the special quality that set some carpets apart—even
though his interest in carpets began in the midst of his quest for the quality with-
out a name. His friends mentioned to him that his carpets had some special
something and he said:

When people started telling me this I began to look more carefully to
discover that there was indeed something I was attracted to in a half-
conscious way. It seemed to me that the rugs I tended to buy exuded
or captured an incredible amount of power which I did not under-
stand but which I obviously recognized.

In the course of buying so many rugs I made a number of discov-
eries. First, I discovered that you could not tell if a rug had this special
property—a spiritual quality—until you had been with it for about a
week. . . . So, as a short cut, I began to be aware that there were cer-
tain geometrical properties that were predictors of this spiritual
property. In other words, I made the shocking discovery that you
could actually look at the rug in a sort of superficial way and just see
if it had certain geometrical properties, and if it did, you could be
almost certain that it had this spiritual property as well.
(Grabow 1983)

Alexander taught some courses on the geometry of his rugs and discovered that
the carpets shared this magical property with religious buildings and religious art
as well. Over the next 20 years he prepared a book about it, recently published,
called A Foreshadowing of 21st Century Art: The Color and Geometry of Very Early
Turkish Carpets (1993). This is a remarkable book. It’s about 9 x 12 inches and
excellently bound. The paper is the sort you find in high-quality art-print books,
and the reason is that it is full of gorgeous reproductions of his carpet collection.

THE BEAD GAME, RUGS, AND BEAUTY / 81

The sad thing—for you—of course is that I cannot possibly reproduce any of

the art from this book in such as way as to do it justice, so some of my comments

will necessarily be a little on the abstract side (those of you who believe whole-

heartedly in the power of abstraction to solve all the world’s problem will have no

trouble with this at all). However, I will try my hand at reproducing some of his

examples. But for the real impact—and the beauty of his stunning carpets—buy

or borrow the book and enjoy.

In this book Alexander says some pretty darn unbelievable things. First is that

the beauty of a structure—a building, for instance—comes from the fine detail at

an almost microscopic level. He takes the grain size for noticeable structure from

that used in the carpets: one eighth inch. He wrote:

In short, the small structure, the detailed organization of matter—
controls the macroscopic level at a way that architects have hardly
dreamed of.

But twentieth century art has been very bad at handling this level.
We have become used to a “conceptual” approach to building, in
which like cardboard, large superficial slabs of concrete, or glass, or
painted sheetrock or plywood create very abstract forms at the big
level. But they have no soul, because they have no fine structure at
all. . . .

It means, directly, that if we hope to make buildings in which the
rooms and building feel harmonious—we too, must make sure that
the structure is correct down to ⅛th of an inch. Any structure which is
more gross, and which leaves this last eighth of an inch, rough, or
uncalculated, or inharmonious—will inevitably be crude.
(Alexander 1993)

Second is that color and feeling also comes from this fine structure:

The geometric micro-organization which I have described leads
directly to the glowing color which we find in carpets. It is this
achievement of color which makes the carpet have the intense ‘being’
character that leads us to the soul. (Alexander 1993)

Alexander feels that artists of the past—often of the distant past but as recently

as Matisse, Bonnard, and Derain—had a better hold on beauty and that it is the

task of late twentieth century artists to try to recapture the knowledge that

seemed, perhaps, so obvious to these earlier artists as to be intuitive. Carpets pro-

vide a way to study this mastery because they are pure design, pure ornament,

and their construction is so completely unconstrained by the materials of their

construction as to allow the artist’s true mastery to come forward. Alexander:

82 / PATTERNS OF SOFTWARE

In a carpet, we have something which deals almost entirely with pat-
tern, ornament. There is really nothing else: just the geometry and
the color of the plane. As I began to enjoy carpets, I realized that the
earliest carpets, especially, deal with this problem with enormous
sophistication. The design of the carpet is essentially made of tiny
knots—each knot usually about an ⅛ of an inch by an ⅛ of an inch.
Each knot is a separate bit of wool, and may be any color, without
any reference to the underlying warps and wefts. So it is a pure
design, made of tiny elements, and which the structure (the design
structure, the pure organization of the geometrical arrangement) is
the main thing which is going on. (Alexander 1993)

This is just a bitmap, but, as we’ll see, with perhaps quite a number of color bits
per pixel.

What is fascinating about this book is that Alexander is not afraid to come out
and say that the power of these carpets comes at least in part from the need of
these early artists to portray their religious feelings and needs. In fact, Alexander
boldly tells us in the first paragraph of Chapter 1:

A carpet is a picture of God. That is the essential fact, fundamental to
the people who produced the carpets, and fundamental to any proper
understanding of these carpets. . . .

The Sufis, who wove most of these carpets, tried to reach union
with God. And, in doing it, in contemplating this God, the carpet
actually tries, itself, to be a picture of the all seeing everlasting stuff.
We may also call it the infinite domain or pearl-stuff.
(Alexander 1993)

The color of the carpets is paramount, and Alexander points out that usually
the oldest carpets—even though they are the most faded—have the brightest and
most brilliant colors. He says this is partly because the master dyer was an equal,
in the twelfth century, to the master weaver. Such a master dyer served a 15-year
apprenticeship, after which the apprentice was required to produce a color no one
had seen before. Only after that could the apprentice become a master. Alexander
notes that this training is the equivalent today of training as a theoretical physicist
followed by training as a brain surgeon. Perhaps a dyer did not learn as much as
someone would for either of these two professions, but it certainly says a lot about
the importance of the dyer to Turkish society.

The depth of feeling in a carpet is related to a concept Alexander calls whole-
ness:

Both the animal-being which comes to life in a carpet, and the inner
light of its color, depend directly on the extent to which the carpet
achieves wholeness in its geometry. The greatest carpets—the ones

THE BEAD GAME, RUGS, AND BEAUTY / 83

which are most valuable, most profound—are, quite simply, the car-
pets which achieve the greatest degree of this wholeness within them-
selves. (Alexander 1993)

Alexander proposes that wholeness is an objective concept—it has nothing to
do with preferences or subjective feelings about the object that might display it.
Like the strips we saw earlier, Alexander gives the reader a test to prove it, in
which he shows us two pairs of carpets and asks an unusual question:

If you had to choose one of these two carpets, as a picture of your own
self, then which one of the two carpets would you choose? . . .

In case you find it hard to ask the question, let me clarify by asking
you to choose the one which seems better able to represent your
whole being, the essence of yourself, good and bad, all that is
human in you. (Alexander 1993, emphasis in original)

We are presented with two pairs of carpets. The first pair is the Berlin prayer
rug and the Kazak from the Tschebull collection; the second pair is the Flowered
Carpet with Giant Central Medallion and the Waving Border Carpet, both from
Alexander’s collection.

Alexander claims that almost everyone will pick the same carpet from each
pair, because an objective something, a wholeness or oneness, comes through.

Up to this point in reading the book I thought maybe Alexander had gone a lit-
tle off his nut and I was ready to quit, so I took the test to prove he was getting a
little too fanciful at this stage of his career. I stared at the two carpets in the first
pair and spent some time trying to second-guess him. Then I kept looking at the
first rug until I felt as calm as I could looking at it. After, I looked at the second
one, again until I became the most peaceful I could feel. Then I asked myself the
questions Alexander posed, and I chose the one that made me more at ease while
thinking about myself. I chose the Berlin prayer rug. This was the choice he pre-
dicted.

At this point I felt nervous.

He pointed out that the Berlin prayer rug is very well known, and sometimes
people have seen it and perhaps don’t remember it but unconsciously choose it
because it is familiar. He then invites us to try it on the previously unpublished
pair from his own collection: the Flowered Carpet with Giant Central Medallion
on the left and the Waving Border Carpet on the right.

I looked at the Waving Border Carpet—the right-hand one—which has a large
central octagon with four surrounding smaller octagons. They are mostly blue
with intricate interlocking patterns inside. The large octagon has some red, white,
and beige subpatterns. All the octagons are in a field of red. At the ends of the cen-
tral part of the carpet are triangular pyramidal indentations—sort of partial

84 / PATTERNS OF SOFTWARE

shapes pressing into the center portion containing the octagons. These are darker,

a deep blue-black—they are like an awakening into the center.

The primary feature of the carpet, though, is the waving border made of a

degenerating vine. It is not very symmetric when you look closely at it, and it con-

tains a recurring hook motif. Each bend of the vine contains a flower—maybe a

tulip form—or a goddesslike figure—very abstract but distinct. The eff ect is that

the motion of the border is so demanding that it enhances the calmness at the

center of the carpet. I was immediately attracted to it.

But then I started to wonder how I was being gamed by Alexander—what was

he trying to do? I looked at the other carpet—the left-hand one. It is partly

destroyed—the upper right quarter and half of the very central portion are com-

pletely missing. The border is partly chewed away; the colors seem faded. The

border is clearly less dramatic than the Waving Border Carpet. But the central

part of the rug has spandrels of a color I had never seen before, a lace interlock of

a deep green-black, but shimmering on a bed of slightly dark red. Sometimes the

green comes to the fore, sometimes the red. The interlace is symmetric only at

the grossest level, with almost every detail that should be the same, actually

diff erent. Each of the three existing spandrels are diff erent from the others but

seem of a kind. I found I was drawn to the upper-left spandrel, which is denser,

more involved—a complexity that I followed and focused on for 10 minutes

without noticing the time. I would be pulled in then pulled out, and as I moved

my eyes from one spandrel to another, I crossed the central medallion, a simple

blue, yellow, and red flower motif bordered in an Escher-field of abstract animal

figures.

But it was clear that the first rug was the more profound and impressive to a

trained eye, although I really wanted to look at the second one longer. Foo on

you, Alexander, I said, you and your idiosyncratic punctuation and crazy theo-

ries—I’m choosing this lesser rug—the left-hand one—and this will prove that

your damn ideas that I’ve puzzled over for years are worthless.

I believe that almost everyone, after careful thought, will choose the
left-hand example. Even though the two are of roughly equal impor-
tance, and of comparable age, I believe most people will conclude that
the left-hand one is more profound: that one feels more calm looking
at it; that one could look at it, day after day, for more years, that it
fills one more successfully, with a calm and peaceful feeling. All this is
what I mean by saying that, objectively, the left-hand carpet is the
greater—and the more whole, of the two. (Alexander 1993)

My domestic partner made the same choices, feeling as I did that the left-hand

carpet of the second pair showed significant flaws that mirrored something in her,

THE BEAD GAME, RUGS, AND BEAUTY / 85

though it was obviously the lesser carpet in some formal sense. (Later that week
nine of 10 people I quizzed made the same choices.)

I kept reading.

The book is in four parts: a theoretical discussion of where the quality of
wholeness comes from, a discussion of dating the carpets and how they fit into a
progression, pictures and descriptions of the carpets themselves, and finally a
comparison of two carpets, the first at the start of the progression and the second
at the end—using them Alexander shows us how far the art has degenerated. I
want to talk only about the origins of wholeness.

A carpet is whole to the degree that it has a thorough structure of centers.
Alexander starts us out with this definition:

As a first approximation, a “center” may be defined as a psychological
entity which is perceived as a whole, and which creates the feeling of a
center, in the visual field. (Alexander 1993)

This definition doesn’t help much, so he gives us some examples.

The following is an example of a center from a round blossom from the Blos-
som fragment:

Notice that this figure has a strong center—in the very middle. But that’s not the
main point. Each of the lighter octagons and diamonds forms another center, the
darker dots at the centers of the smaller blossoms form others. The asymmetrical

86 / PATTERNS OF SOFTWARE

black leaves are kinds of centers. The sharp indentations of the outer press toward
the middle, reinforcing the center. The Blossom center gives the impression that
centers are all like mandalas—somewhat circular and concentric. Not so.

Here is a sketch from the niche of the Coupled column prayer rug:

This form is a center because of the hexagonal archway, the steps, the arms with
hexagons at the ends, and the lily at the top—not because of the overall shape.

The next point Alexander makes is that for wholeness, it isn’t that a carpet has
a single center but that it has a multiplicity of centers that reinforce one another
by influence and by their structure, and that’s what makes the diff erence.

Alexander says:

The degree of wholeness which a carpet achieves is directly correlated
to the number of centers which it contains. The more centers it has in
it, the more powerful and deep its degree of wholeness.
(Alexander 1993)

In fact, the more centers there are and the more intertwined and interlaced they
are, the more whole the carpet becomes because the centers are denser. At the top
of the next page is an example of this from the border of the Seljuk prayer carpet.
Both the dark design elements and the lighter background form centers wherever
there is a convex spot, wherever linear parts cross, and at bends. There are per-
haps a dozen or more centers here.

THE BEAD GAME, RUGS, AND BEAUTY / 87

Centers are made up of local symmetries.

1. Most centers are symmetrical. This means they have at least one
bilateral symmetry.

2. Even when centers are asymmetrical, they are always composed
of smaller elements or centers which are symmetrical.

3. All centers are made of many internal local symmetries, which
produce smaller centers within the larger center (most of them not on
the main axis of the larger center), and have a very high internal
density of local symmetries. It is this property which gives them
their power. (Alexander 1993)

One of the interesting things about the carpets is that the sense of symmetry
remains even when the parts that are supposed to correspond are not exactly
alike. At the top of the next page is an interesting example. Look at it quickly and
decide whether you think it is symmetric. Looking closely at it, it’s clear that it is
crudely symmetric, but this is enough for most people to see it as very symmetric.
There is actually something remarkable at work here: It is not just that the
crudeness of this form—both in the original and in my even cruder reproduc-
tion—does not get in the way of its beauty; in fact, it enhances that beauty. On
the wall above my writing place I have a photograph of a Greek “shack” taken by

88 / PATTERNS OF SOFTWARE

Barbara Cordes. The shack is made of stone with a red-tile roof. Each stone is of
a diff erent size—some roughly cut, others seemingly randomly selected. The
roof tiles are all diff erent colors and roughly arranged. There is a deep blue frame
window, and the shack sits behind a dead bush. The reason I have the picture
there is that it is relaxing and helps me write. Its beauty, somehow, comes from
the irregularity of the construction. Here is what Alexander wrote about a simi-
lar building, the famous House of Tiles in Mexico City:

We have become used to almost fanatical precision in the construc-
tion of buildings. Tile work, for instance, must be perfectly aligned,
perfectly square, every tile perfectly cut, and the whole thing accurate
on a grid to a tolerance of a sixteenth of an inch. But our tilework is
dead and ugly, without soul.

In this Mexican house the tiles are roughly cut, the wall is not per-
fectly plumb, and the tiles don’t even line up properly. Sometimes one
tile is as much as half an inch behind the next one in the vertical
plane.

And why? Is it because these Mexican craftsmen didn’t know how
to do precise work? I don’t think so. I believe they simply knew what is
important and what is not, and they took good care to pay attention
only to what is important: to the color, the design, the feeling of one
tile and its relationship to the next—the important things that create
the harmony and feeling of the wall. The plumb and the alignment
can be quite rough without making any diff erence, so they didn’t
bother to spend too much effort on these things. They spent their
effort in the way that made the most diff erence. And so they pro-
duced this wonderful quality, this harmony . . . simply because that is
what they paid attention to, and what they tried to produce.
(Alexander 1991, emphasis in original)

The reason that American craftsmen cannot achieve the same thing is that they
are concerned with perfection and plumb, and it is not possible to concentrate on
two things at the same time—perfection and the field of centers.

THE BEAD GAME, RUGS, AND BEAUTY / 89

In our time, many of us have been taught to strive for an insane per-
fection that means nothing. To get wholeness, you must try instead to
strive for this kind of perfection, where things that don’t matter are
left rough and unimportant, and the things that really matter are
given deep attention. This is a perfection that seems imperfect. But it
is a far deeper thing. (Alexander 1991, emphasis in original)

At this point it is clear that Alexander’s earlier work on subsymmetries plays
right into the wholeness of rugs: The strips with more subsymmetries were seen
as more coherent than those with fewer. A subsymmetry is like a center, and the
more centers the more whole the carpet is. Furthermore, subsymmetries range
from the size of the entire strip down to the smallest place where symmetry is
possible—pairs of squares. The same is true of centers: They must exist at all lev-
els of scale. In fact, carpets with all the other characteristics for wholeness but
lacking centers at all levels will not achieve wholeness and so can be boring. Alex-
ander states the rule thus:

A center will become distinct, and strong, only when it contains,
within itself, another center, also strong, and no less than half its own
size. (Alexander 1993)

This is true not only for the same reasons it is true in the strips but also
because without large structure, the design cannot hold together—it becomes
merely a jumble of isolated design elements, each of which might hold attention
but without the large glue it will not be calm and whole—it would be like gluing
together several masterpiece paintings at the edges. With this definition it is
apparent that the goal of a carpet is to present a single center—the one at the larg-
est scale—which necessarily must be constructed from other centers that support
it.

One of the things I noticed about the Flowered Carpet with Giant Central
Medallion was that the interlaced green and red spandrels held my attention. This
is an example of Alexander’s notion of the strong use of positive space. In such use
both the positive and negative spaces have good shape and form centers. In this
way the density of centers can be higher, and the degree of wholeness stronger.
This concept should be familiar because it is like those Escher drawings of fish, for
example, in which both the figure and ground can be seen as fish. It is a little
more subtle in this niche, which appears at the top of the next page.

The shapes of the white convexities are strong as are the black convexities that
are white concavities. The figure is bilaterally symmetric and leads us to strong
centers at the half-hexagon at the top and in the spandrels.

Now that we have centers—lots of them—we need to make them distinct—the
centers need to be diff erentiated; recall that in Alexander’s A Timeless Way (1979),

90 / PATTERNS OF SOFTWARE

Alexander talked at length about diff erentiation. At the top of the next page is a

very rough sketch of the central star of the star Ushak rug.

Alexander says the star achieves its distinctiveness from five sources:

1. The centers next to the figure—those created by the space
around it—are also very strong.

2. These strong centers are extremely diff erent in character from
the star itself—thus the distinctness is achieved, in part, by the diff er-
ences between the centers of the figure, and the centers of the ground.

3. There are very strong color diff erences between field and
ground.

4. The complex character of the boundary line seems, at least in
this case, to contribute to the distinctiveness of the form. . . .

5. The hierarchy of levels of scale in the centers also help create the
eff ect, by increasing the degree to which the form is perceived as a
whole, entity, or being in its own right. (Alexander 1993, emphasis in

original)

The definition of a center now is:

Every successful center is made of a center surrounded by a boundary
which is itself made of centers. (Alexander 1993)

That this is a partially circular definition seems to startle Alexander, although we

computer scientists and mathematicians find it simple. It reminds me of the defi-

THE BEAD GAME, RUGS, AND BEAUTY / 91

nition of system, which I’ll talk about once we’re through with Alexander’s wild
ride.

Alexander goes back to the bead game and talks about the difficulty of finding
two-dimensional patterns with high degrees of subsymmetries like the strips we
saw earlier. He points out one that is seen in a couple of rare Konya carpets—it is
a figure that is almost immediately familiar and unique (top of the next page).

There clearly are many centers here, and the figure ground distinction is amaz-
ing. There are embedded crosses, giving the entire figure the feeling of a being,
and there are almost smaller beings within the larger one.

This figure lies in an 11 x 15 grid. It is one shape out of 1047 possibilities.
Because of this, Alexander is enthralled by the creative process require to find it.
He says something interesting about this process, which we can liken to the design
process in software:

[T]he greatest structures, the greatest centers, are created not within
the framework of a standard pattern—no matter how dense the
structures it contains—but in a more spontaneous frame of mind, in
which the centers lead to other centers, and the structure evolves,
almost of its own accord, under completely autonomous or spontane-
ous circumstances. Under these circumstances the design is not
thought out, conceived—it springs into existence, almost more
spontaneously, during the process by which it is made.

92 / PATTERNS OF SOFTWARE

And, of course, this process corresponds more closely to the condi-
tions under which a carpet is actually woven—since working, row by
row, knot by knot, and having to create the design as it goes along,
without ever seeing the whole, until the carpet itself is actually fin-
ished—this condition, which would seem to place such constraint
and difficulty on the act of creation—is in fact just that circumstance
in which the spontaneous, unconscious knowledge of the maker is
most easily released from the domination of thought—and thus
allows itself most easily to create the deepest centers of all.
(Alexander 1993, emphasis added)

The implication is clear: When we carefully design or work from a standard
pattern, we do not achieve artifacts of the deepest meaning and wholeness. Per-
haps the results are pleasant, but they are eventually boring and funky—perhaps
they are commonplace or do not serve their purpose as well as they could. Alex-
ander says he has evidence for his bold statement—he leaves it to the next book
(not yet published) in the sequence, The Nature of Order—but there is not
enough room in such a small book as A Foreshadowing to go into it.

This is also the way the best (creative) writing is done. When you sit down at
your writing place, sometimes you are transformed into a mere scribe as the
power of the story or poem takes over—it is an adventure to see where it will lead.
Many writers have a ritual or set of superstitions that they hope will lead them to
this magic place where the story becomes guide. When asked why they write,
some writers say it is to find out what happens in the end.

I write poetry and fiction as well as essays. In all three, but especially in poetry,
I am often shocked to read what I wrote, because it rarely corresponds to any plan
I’ve made. Books on writing—at least the most recent ones—tend to discourage
overplanning the story or poem. The question becomes—and you must answer
this for yourself—does this clearly creative process have a place in a software pro-
cess?

THE BEAD GAME, RUGS, AND BEAUTY / 93

The last topic Alexander addresses is one I casually brought up just a bit ago—

the emergence of beings.

I’ll leave it to Alexander to introduce the topic:

I now present the culmination of the argument. This hinges on an
extraordinary phenomenon—closely connected to the nature of
wholeness—and fundamental to the character of great Turkish carpet
art. It may be explained in a single sentence: As a carpet begins to be
a center (and thus to contain the densely packed structure of
centers. . .), then, gradually, the carpet as a whole also begins to
take on the nature of “being.” We may also say that it begins to be a
picture of a human soul.

The subject is delicate, because it is not quite clear how to discuss
it—not even how to evaluate it—nor even in what field or category
to place it. It opens the door to something we can only call “spirit”
and to the empirical fact—a fact of psychology if of nothing else—
that after all, when a carpet does achieve some greatness, the great-
ness it achieves seems to lie in the realm of the spirit, not merely in the
realm of art. (Alexander 1993, emphasis in original)

What is a being? It’s a powerful center that transcends the merely fascinating. It

is a center that takes over and reflects the human and perhaps god-spirit. It is

autonomous, a “creation unto itself.” The figure at the top of the next page is the

being that appears in the Seljuk prayer carpet.

I think it’s rather impressive.

Alexander ends his book by telling us:

I see the beginnings of an attitude in which the structure may be
understood, concretely, and with a tough mind—not only with an
emotional heart. And I see the rebirth of an attitude about the world,
perhaps based on new views of ethics, truth, ecology, which will give
us a proper ground-stuff for the mental attitude from which these
works can spring.

I do not believe that these works—the works of the 21st century—
will resemble the Turkish carpets in any literal sense. But I believe
some form of the same primitive force, the same knowledge of struc-
ture, and the same desire to make a work in which the work carries
and illuminates the spirit—will be present.

I am almost certain, that in the 21st century, this ground-stuff will
appear. (Alexander 1993)

Perhaps.

94 / PATTERNS OF SOFTWARE

Well, what can this possibly have to do with software? Maybe not too much,
but Alexander’s definition of center sounds familiar to me. Here is a definition of
system I’ve been using:

A system is a set of communicating components that work together
to provide a comprehensive set of capabilities.

Of course, a component is another system. The nature of a system is such that
at almost any granularity it looks the same—it is a system. This is easy: A system
is composed of subsystems that achieve certain eff ects by exhibiting behavior in
response to requests. The system and each subsystem are defined behaviorally
according to the roles and responsibilities of that system or subsystem. Each sub-
system can be viewed as a center, and the near circularity of Alexander’s definition
of center is reflected here: The goal is to build a system which is necessarily made
up of other systems.

THE BEAD GAME, RUGS, AND BEAUTY / 95

We can compare this with the definition of autopoietic system, which is a term
from a field that studies systems from the point of view of biology—you could
call it a field that has a mechanistic view of biological systems.

An autopoietic system is organized as a network of processes of pro-
duction of components that produces the components that: (1)
through their interactions and transformations continuously regen-
erate and realize the network of processes that produced them; and
(2) constitute it as a concrete entity in the space in which they exist
by specifying the topological domain of its realization as a network.
(Varela 1979)

If you read this definition carefully, you will find that it isn’t so very diff erent
from my definition of “system” or Alexander’s definition of “center”. When we put
together an object-oriented thing, it is a system, not a program. The diff erence
between a program and a system is precisely the characteristic of a system having
many centers or ways of approaching it—from the vantage point of any sub-
system, the rest of the system is a server—whereas in a program, you generally
have a single way of viewing it, usually from the top down.

The most wonderful thing can happen if you construct a system that can be
customized or specialized—it becomes a framework.

A framework is a system that can be customized, specialized, or
extended to provide more specific, more appropriate, or slightly
diff erent capabilities

If you have a framework, you can use it for diff erent purposes without having
to recode it all. It is in this sense—and in this sense only—that objects and object
technology provide reuse. There is no such thing as (easy) reuse in a general sense
in which you can stockpile components except for the most trivial and inconse-
quential.

Building a system is like making a Turkish carpet: It requires an enormous
amount of work, concentration, inspiration, creativity, and, in my opinion, it is
best done piecemeal exactly the way the best Turkish master makers did it—by
starting with an idea and partly designing it and then seeing where it goes.

Only in some systems does the being emerge, the framework that can be used
and reused which gives systems and objects their spirit.

Like the best Turkish carpets the best systems are unique, but the work will not
be wasted if you can continue to use it for new but related purposes. It is an asset
and an inspiration to others who follow to try to do as well. A system can afford to
be diff erent—and perhaps over time we will develop mechanisms in our overly
speed-conscious programming languages and system-building languages to make

it easier to produce highly diff erentiated and center-full systems—I have hopes
for the twenty-first century too.

What are patterns, then? Perhaps they are for Alexander what they are by anal-
ogy for computer scientists: just a way to remember what we’ve forgotten about
buildings so that when we set out to build towns and buildings, cottages and
homes, paths and places to congregate, we don’t forget the stuff we need to help
create the centers, to give them life, give them the quality without a name, the
being that emerges at last.

